3,777 research outputs found

    Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology

    Get PDF
    publication-status: Publishedtypes: ArticleRecently, the veracity of the published chronology for the Pliocene section of North Atlantic Ocean Drilling Program Site 982 was called into question. Here, we examine the robustness of the original age model as well as the proposed age model revision. The proposed revision is predicated on an apparent mis-identification of the depth to the Gauss-Matuyama (G/M) polarity chronozone reversal boundary (2.581 Ma) based on preliminary shipboard paleomagnetic data and offers a new chronology which includes a hiatus between ~3.2 and 3 Ma. However, an even more accurate shore-based, u-channel-derived polarity chronozone stratigraphy for the past ~2.7 Ma supports the shipboard composite stratigraphy and demonstrates that the original estimate of the depth of the G/M reversal in the Site 982 record is correct. Thus, the main justification forwarded to support the revised chronology no longer exists. We demonstrate that the proposed revision results in a pronounced anomaly in sedimentation rates proximal to the proposed hiatus, erroneous assignment of marine-isotope stages in the Site 982 Pliocene benthic stable oxygen isotope stratigraphy, and a markedly worse correlation of proxy records between this site and other regional paleoclimate data. We conclude that the original chronology for Site 982 is a far more accurate age-model than that which arises from the published revision. We strongly recommend the use of the original chronology for all future work at Site 982

    Solar System: Sifting through the debris

    Get PDF
    A quadrillion previously unnoticed small bodies beyond Neptune have been spotted as they dimmed X-rays from a distant source. Models of the dynamics of debris in the Solar System's suburbs must now be reworked.Comment: 3 pages, 1 figure; Nature News and Views on Chang et al. 2006, Nature, 442, 660-66

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low latitude thermospheric nitric oxide

    Get PDF
    We use data from two NASA satellites, the Thermosphere Ionosphere Energetics and Dynamics (TIMED) and the Aeronomy of Ice in the Mesosphere (AIM) satellites in conjunction with model simulations from the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) to elucidate the key dynamical and chemical factors governing the abundance and diurnal variation of nitric oxide (NO) at near solar minimum conditions and low latitudes. This analysis was enabled by the recent orbital precession of the AIM satellite which caused the solar occultation pattern measured by the Solar Occultation for Ice Experiment (SOFIE) to migrate down to low and mid latitudes for specific periods of time. We use a month of NO data collected in January 2017 to compare with two versions of the TIME-GCM, one driven solely by climatological tides and analysis-derived planetary waves at the lower boundary and free running at all other altitudes, while the other is constrained by a high-altitude analysis from the Navy Global Environmental Model (NAVGEM)up to the mesopause. We also compare SOFIE data with a NO climatology from the Nitric Oxide Empirical Model (NOEM). Both SOFIE and NOEM yield peak NO abundances of around 4×107cm−3; however, the SOFIE profile peaks about 6-8 km lower than NOEM. We show that this difference is likely a local time effect; SOFIE being a dawn measurement and NOEM representing late morning/near noon. The constrained version of TIME-GCM exhibits a low altitude dawn peak while the model that is forced solely at the lower boundary and free running above does not. We attribute this difference due to a phase change in the semi-diurnal tide in the NAVGEM-constrained model causing descent of high NO mixing ratio air near dawn. This phase difference between the two models arises due to differences in the mesospheric zonal mean zonal winds. Regarding the absolute NO abundance, all versions of the TIME-GCM overestimate this. Tuning the model to yield calculated atomic oxygen in agreement with TIMED data helps, but is insufficient. Further, the TIME-GCM underestimates the electron density [e-] as compared with the International Reference Ionosphere empirical model. This suggests a potential conflict with the requirements of NO modeling and [e-] modeling since one solution typically used to increase model [e-] is to increase the solar soft X ray flux which would, in this case, worsen the NO model/data discrepancy

    Prevention of bacterial infections in the newborn by pre-delivery administration of azithromycin: Study protocol of a randomized efficacy trial.

    Get PDF
    BACKGROUND: Neonatal deaths, estimated at approximately 4 million annually, now account for almost 40% of global mortality in children aged under-five. Bacterial sepsis is a leading cause of neonatal mortality. Assuming the mother is the main source for bacterial transmission to newborns, the primary objective of the trial is to determine the impact of one oral dose of azithromycin, given to women in labour, on the newborn's bacterial carriage in the nasopharynx. Secondary objectives include the impact of the intervention on bacterial colonization in the baby and the mother during the first month of life. METHODS/DESIGN: This is a Phase III, double -blind, placebo controlled randomized clinical trial in which 830 women in labour were randomized to either a single dose of 2 g oral azithromycin or placebo (ratio 1:1). The trial included pregnant women in labour aged 18 to 45 years attending study health centres in the Western Gambia. A post-natal check of the mother and baby was conducted at the health centre by study clinicians before discharge and 8-10 days after delivery. Home follow up visits were conducted daily during the first week and then weekly until week 8 after delivery. Vaginal swabs and breast milk samples were collected from the mothers, and the pathogens Streptococcus pneumoniae, Group B Streptococcus (GBS) and Staphylococcus aureus were isolated from the study samples. For bacterial isolates, susceptibility pattern to azithromycin was determined using disk diffusion and E-test. Eye swabs were collected from newborns with eye discharge during the follow up period, and Chlamydial infection was assessed using molecular methods. DISCUSSION: This is a proof-of-concept study to assess the impact of antibiotic preventive treatment of women during labour on bacterial infections in the newborn. If the trial confirms this hypothesis, the next step will be to assess the impact of this intervention on neonatal sepsis. The proposed intervention should be easily implementable in developing countries. TRIAL REGISTRATION: ClinicalTrials.gov Identifier--NCT01800942--First received: February 26, 2013

    A thin layer angiogenesis assay: a modified basement matrix assay for assessment of endothelial cell differentiation

    Get PDF
    BACKGROUND: Basement matrices such as Matrigel™ and Geltrex™ are used in a variety of cell culture assays of anchorage-dependent differentiation including endothelial cell tube formation assays. The volumes of matrix recommended for these assays (approximately 150 μl/cm(2)) are costly, limit working distances for microscopy, and require cell detachment for subsequent molecular analysis. Here we describe the development and validation of a thin-layer angiogenesis (TLA) assay for assessing the angiogenic potential of endothelial cells that overcomes these limitations. RESULTS: Geltrex™ basement matrix at 5 μl/cm(2) in 24-well (10 μl) or 96-well (2 μl) plates supports endothelial cell differentiation into tube-like structures in a comparable manner to the standard larger volumes of matrix. Since working distances are reduced, high-resolution single cell microscopy, including DIC and confocal imaging, can be used readily. Using MitoTracker dye we now demonstrate, for the first time, live mitochondrial dynamics and visualise the 3-dimensional network of mitochondria present in differentiated endothelial cells. Using a standard commercial total RNA extraction kit (Qiagen) we also show direct RNA extraction and RT-qPCR from differentiated endothelial cells without the need to initially detach cells from their supporting matrix. CONCLUSIONS: We present here a new thin-layer assay (TLA) for measuring the anchorage-dependent differentiation of endothelial cells into tube-like structures which retains all the characteristics of the traditional approach but with the added benefit of a greatly lowered cost and better compatibility with other techniques, including RT-qPCR and high-resolution microscopy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-014-0041-5) contains supplementary material, which is available to authorized users

    Agreement between left and right middle cerebral artery blood velocity responses to incremental and constant work-rate exercise in healthy males and females

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recordObjective: To quantify the agreement between left and right middle cerebral artery blood velocity (MCAv) responses to incremental and constant work-rate exercise in adults. Approach: Seventeen healthy adults (23.8±2.4 years, 9 females) completed a ramp incremental test to exhaustion on a cycle ergometer, three 6-minute transitions at a moderate-intensity, and three at a heavy-intensity, all on separate days. Bilateral MCAv was measured throughout using transcranial Doppler ultrasonography, with left and right MCAv data analysed separately. Data were analysed at baseline, gas exchange threshold, respiratory compensation point and exhaustion during ramp incremental exercise. MCAv responses to constant work-rate exercise were analysed using a mono-exponential model, to determine time- and amplitude-based kinetic response parameters. Main Results: Left and right MCAv responses to incremental and constant work-rate exercise were significantly, strongly and positively correlated (r≥0.61, P<0.01). Coefficient of variation (left vs right) ranged from 7.3-20.7%, 6.4-26.2% and 5.9-22.5% for ramp, moderate and heavy 33 intensity exercise, respectively. The relative change in MCAv from baseline was higher in the right compared to left MCAv during ramp, moderate and heavy-intensity exercise (all P<0.05), but the effect sizes were small (d≤0.4). Small mean left-right differences were present during ramp incremental exercise at all time-points (<6 cm/s; <4%), and for all kinetic parameters during moderate and heavy-intensity exercise (<3 cm/s, <3%, <4 s). Significance: These findings demonstrate similarities between left and right MCAv responses to incremental and constant-work rate exercise in adults on a group-level, but also highlight individual variation in the agreement between left and right MCAv exercise responsesQUEX Institut

    A single sub-km Kuiper Belt object from a stellar Occultation in archival data

    Get PDF
    The Kuiper belt is a remnant of the primordial Solar System. Measurements of its size distribution constrain its accretion and collisional history, and the importance of material strength of Kuiper belt objects (KBOs). Small, sub-km sized, KBOs elude direct detection, but the signature of their occultations of background stars should be detectable. Observations at both optical and X-ray wavelengths claim to have detected such occultations, but their implied KBO abundances are inconsistent with each other and far exceed theoretical expectations. Here, we report an analysis of archival data that reveals an occultation by a body with a 500 m radius at a distance of 45 AU. The probability of this event to occur due to random statistical fluctuations within our data set is about 2%. Our survey yields a surface density of KBOs with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out inferred surface densities from previous claimed detections by more than 5 sigma. The fact that we detected only one event, firmly shows a deficit of sub-km sized KBOs compared to a population extrapolated from objects with r>50 km. This implies that sub-km sized KBOs are undergoing collisional erosion, just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until 1800 hours London time on 16 December. 19 pages; 7 figure

    Theoretical size distribution of fossil taxa: analysis of a null model

    Get PDF
    BACKGROUND: This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. MODEL: New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. CONCLUSION: The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family

    The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)

    Get PDF
    The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans
    corecore