239 research outputs found
The Landscape of Realized Homologous Recombination in Pathogenic Bacteria
Recombination enhances the adaptive potential of organisms by allowing genetic variants to be tested on multiple genomic backgrounds. Its distribution in the genome can provide insight into the evolutionary forces that underlie traits, such as the emergence of pathogenicity. Here, we examined landscapes of realized homologous recombination of 500 genomes from ten bacterial species and found all species have âhotâ regions with elevated rates relative to the genome average. We examined the size, gene content, and chromosomal features associated with these regions and the correlations between closely related species. The recombination landscape is variable and evolves rapidly. For example in Salmonella, only short regions of around 1 kb in length are hot whereas in the closely related species Escherichia coli, some hot regions exceed 100 kb, spanning many genes. Only Streptococcus pyogenes shows evidence for the positive correlation between GC content and recombination that has been reported for several eukaryotes. Genes with function related to the cell surface/membrane are often found in recombination hot regions but E. coli is the only species where genes annotated as âvirulence associatedâ are consistently hotter. There is also evidence that some genes with âhousekeepingâ functions tend to be overrepresented in cold regions. For example, ribosomal proteins showed low recombination in all of the species. Among specific genes, transferrin-binding proteins are recombination hot in all three of the species in which they were found, and are subject to interspecies recombination
Species status of Neisseria gonorrhoeae: Evolutionary and epidemiological inferences from multilocus sequence typing
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited - Copyright @ 2007 Bennett et al; licensee BioMed Central Ltd.Background: Various typing methods have been developed for Neisseria gonorrhoeae, but none provide the combination of discrimination, reproducibility, portability, and genetic inference that allows the analysis of all aspects of the epidemiology of this pathogen from a single data set. Multilocus sequence typing (MLST) has been used successfully to characterize the related organisms Neisseria meningitidis and Neisseria lactamica. Here, the same seven locus Neisseria scheme was used to characterize a diverse collection of N. gonorrhoeae isolates to investigate whether this method would allow differentiation among isolates, and to distinguish these three species. Results: A total of 149 gonococcal isolates were typed and submitted to the Neisseria MLST database. Although relatively few (27) polymorphisms were detected among the seven MLST loci, a total of 66 unique allele combinations (sequence types, STs), were observed, a number comparable to that seen among isolate collections of the more diverse meningococcus. Patterns of genetic variation were consistent with high levels of recombination generating this diversity. There was no evidence for geographical structuring among the isolates examined, with isolates collected in Liverpool, UK, showing levels of diversity similar to a global collection of isolates. There was, however, evidence that populations of N. meningitidis, N. gonorrhoeae and N. lactamica were distinct, with little support for frequent genetic recombination among these species, with the sequences from the gdh locus alone grouping the species into distinct clusters. Conclusion: The seven loci Neisseria MLST scheme was readily adapted to N. gonorrhoeae isolates, providing a highly discriminatory typing method. In addition, these data permitted phylogenetic and population genetic inferences to be made, including direct comparisons with N. meningitidis and N. lactamica. Examination of these data demonstrated that alleles were rarely shared among the three species. Analysis of variation at a single locus, gdh, provided a rapid means of identifying misclassified isolates and determining whether mixed cultures were present.This study is funded by the Wellcome Trust and European Unio
Exploiting Real-Time Genomic Surveillance Data To Assess 4CMenB Meningococcal Vaccine Performance in Scotland, 2015 to 2022
The United Kingdom implemented the first national infant immunization schedule for the meningococcal vaccine 4CMenB (Bexsero) in September 2015, targeting serogroup B invasive meningococcal disease (IMD). Bexsero contains four variable subcapsular proteins, and postimplementation IMD surveillance was necessary, as nonhomologous protein variants can evade Bexsero-elicited protection. We investigated postimplementation IMD cases reported in Scotland from 1 September 2015 to 30 June 2022. Patient demographics and vaccination status were combined with genotypic data from the causative meningococci, which were used to assess vaccine coverage with the meningococcal deduced vaccine antigen reactivity (MenDeVAR) index. Eighty-two serogroup B IMD cases occurred in children >5âyears of age, 48 (58.5%) of which were in unvaccinated children and 34 (41%) of which were in children who had received â„1 Bexsero dose. Fifteen of the 34 vaccinated children had received one dose, 17 had received two doses, and two had received three doses. For 39 cases, meningococcal sequence data were available, enabling MenDeVAR index deductions of vaccine-preventable (M-VP) and non-vaccine-preventable (M-NVP) meningococci. Notably, none of the 19 of the children immunized â„2 times had IMD caused by M-VP meningococci, with 2 cases of NVP meningococci, and no deduction possible for 17. Among the 15 children partially vaccinated according to schedule (1 dose), 7 were infected by M-VP meningococci and 2 with M-NVP meningococci, with 6 for which deductions were not possible. Of the unvaccinated children with IMD, 40/48 were ineligible for vaccination and 20/48 had IMD caused by M-VP meningococci, with deductions not being possible for 14 meningococci. IMPORTANCE This study demonstrates the value of postimplementation genomic surveillance of vaccine-preventable pathogens in providing information on real-world vaccine performance. The data are consistent with 2 and 3 doses of Bexsero, delivered according to schedule, providing good protection against invasive disease caused by meningococci deduced from genomic data to be vaccine preventable. Single doses provide poorer protection to infants. In practical terms, these data can provide public health reassurance when vaccinated individuals develop IMD with non-vaccine-preventable variants. They further indicate that additional testing is needed on variants for which no immunological data exist to improve estimates of protection, although these data suggest that the uncharacterized variants are unlikely to be covered by Bexsero. Finally, the confirmation that incomplete or absent doses in infancy lead to reduced protection supports public health and general practitioners in promoting vaccination according to schedule
Pan-GWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with Virulence and Niche Adaptation
Streptococcus agalactiae (group B streptococcus; GBS) is a colonizer of the gastrointestinal and urogenital tracts, and an opportunistic pathogen of infants and adults. The worldwide population of GBS is characterized by clonal complexes (CCs) with different invasive potentials. CC17, for example, is a hypervirulent lineage commonly associated with neonatal sepsis and meningitis, while CC1 is less invasive in neonates and more commonly causes invasive disease in adults with comorbidities. The genetic basis of GBS virulence and the extent to which different CCs have adapted to different host environments remain uncertain. We have therefore applied a pan-genome-wide association study (GWAS) approach to 1,988 GBS strains isolated from different hosts and countries. Our analysis identified 279 CC-specific genes associated with virulence, disease, metabolism, and regulation of cellular mechanisms that may explain the differential virulence potential of particular CCs. In CC17 and CC23, for example, we have identified genes encoding pilus, quorum-sensing proteins, and proteins for the uptake of ions and micronutrients which are absent in less invasive lineages. Moreover, in CC17, carriage and disease strains were distinguished by the allelic variants of 21 of these CC-specific genes. Together our data highlight the lineage-specific basis of GBS niche adaptation and virulence.IMPORTANCE GBS is a leading cause of mortality in newborn babies in high- and low-income countries worldwide. Different strains of GBS are characterized by different degrees of virulence, where some are harmlessly carried by humans or animals and others are much more likely to cause disease.The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host.These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted
UKMenCar4: A cross-sectional survey of asymptomatic meningococcal carriage amongst UK adolescents at a period of low invasive meningococcal disease incidence.
Carriage of Neisseria meningitidis, the meningococcus, is a prerequisite for invasive meningococcal disease (IMD), a potentially devastating infection that disproportionately afflicts infants and children. Humans are the sole known reservoir for the meningococcus, and it is carried asymptomatically in the nasopharynx of ~10% of the population. Rates of carriage are dependent on age of the host and social and behavioural factors. In the UK, meningococcal carriage has been studied through large, multi-centre carriage surveys of adolescents in 1999, 2000, and 2001, demonstrating carriage can be affected by immunisation with the capsular group C meningococcal conjugate vaccine, inducing population immunity against carriage. Fifteen years after these surveys were carried out, invasive meningococcal disease incidence had declined from a peak in 1999. The UKMenCar4 study was conducted in 2014/15 to investigate rates of carriage amongst the adolescent population during a period of low disease incidence. The protocols and methodology used to perform UKMenCar4, a large carriage survey, are described here
Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study [corrected].
BACKGROUND: A serogroup A meningococcal polysaccharide-tetanus toxoid conjugate vaccine (PsA-TT, MenAfriVac) was licensed in India in 2009, and pre-qualified by WHO in 2010, on the basis of its safety and immunogenicity. This vaccine is now being deployed across the African meningitis belt. We studied the effect of PsA-TT on meningococcal meningitis and carriage in Chad during a serogroup A meningococcal meningitis epidemic. METHODS: We obtained data for the incidence of meningitis before and after vaccination from national records between January, 2009, and June, 2012. In 2012, surveillance was enhanced in regions where vaccination with PsA-TT had been undertaken in 2011, and in one district where a reactive vaccination campaign in response to an outbreak of meningitis was undertaken. Meningococcal carriage was studied in an age-stratified sample of residents aged 1-29 years of a rural area roughly 13-15 and 2-4 months before and 4-6 months after vaccination. Meningococci obtained from cerebrospinal fluid or oropharyngeal swabs were characterised by conventional microbiological and molecular methods. FINDINGS: Roughly 1·8 million individuals aged 1-29 years received one dose of PsA-TT during a vaccination campaign in three regions of Chad in and around the capital N'Djamena during 10 days in December, 2011. The incidence of meningitis during the 2012 meningitis season in these three regions was 2·48 per 100,000 (57 cases in the 2·3 million population), whereas in regions without mass vaccination, incidence was 43·8 per 100,000 (3809 cases per 8·7 million population), a 94% difference in crude incidence (p<0·0001), and an incidence rate ratio of 0·096 (95% CI 0·046-0·198). Despite enhanced surveillance, no case of serogroup A meningococcal meningitis was reported in the three vaccinated regions. 32 serogroup A carriers were identified in 4278 age-stratified individuals (0·75%) living in a rural area near the capital 2-4 months before vaccination, whereas only one serogroup A meningococcus was isolated in 5001 people living in the same community 4-6 months after vaccination (adjusted odds ratio 0·019, 95% CI 0·002-0·138; p<0·0001). INTERPRETATION: PSA-TT was highly effective at prevention of serogroup A invasive meningococcal disease and carriage in Chad. How long this protection will persist needs to be established. FUNDING: The Bill & Melinda Gates Foundation, the Wellcome Trust, and Médecins Sans FrontÚres
The Effect of Immune Selection on the Structure of the Meningococcal Opa Protein Repertoire
The opa genes of the Gram negative bacterium Neisseria meningitidis encode Opacity-associated outer membrane proteins whose role is to promote adhesion to the human host tissue during colonisation and invasion. Each meningococcus contains 3â4 opa loci, each of which may be occupied by one of a large number of alleles. We analysed the Opa repertoire structure in a large, well-characterised collection of asymptomatically carried meningococci. Our data show an association between Opa repertoire and meningococcal lineages similar to that observed previously for meningococci isolated from cases of invasive disease. Furthermore, these Opa repertoires exhibit discrete, non-overlapping structure at a population level, and yet low within-repertoire diversity. These data are consistent with the predictions of a mathematical model of strong immune selection upon a system where identical alleles may occupy different loci
On State-Space Reduction in Multi-Strain Pathogen Models, with an Application to Antigenic Drift in Influenza A
Many pathogens exist in phenotypically distinct strains that interact with each other through competition for hosts. General models that describe such multi-strain systems are extremely difficult to analyze because their state spaces are enormously large. Reduced models have been proposed, but so far all of them necessarily allow for coinfections and require that immunity be mediated solely by reduced infectivity, a potentially problematic assumption. Here, we suggest a new state-space reduction approach that allows immunity to be mediated by either reduced infectivity or reduced susceptibility and that can naturally be used for models with or without coinfections. Our approach utilizes the general framework of status-based models. The cornerstone of our method is the introduction of immunity variables, which describe multi-strain systems more naturally than the traditional tracking of susceptible and infected hosts. Models expressed in this way can be approximated in a natural way by a truncation method that is akin to moment closure, allowing us to sharply reduce the size of the state space, and thus to consider models with many strains in a tractable manner. Applying our method to the phenomenon of antigenic drift in influenza A, we propose a potentially general mechanism that could constrain viral evolution to a one-dimensional manifold in a two-dimensional trait space. Our framework broadens the class of multi-strain systems that can be adequately described by reduced models. It permits computational, and even analytical, investigation and thus serves as a useful tool for understanding the evolution and ecology of multi-strain pathogens
Investigation of correlates of protection against pharyngeal carriage of Neisseria meningitidis genogroups W and Y in the African meningitis belt
BACKGROUND: Serum bactericidal antibody titres that correlate with protection against invasive meningococcal disease have been characterised. However, titres that are associated with protection against acquisition of pharyngeal carriage of Neisseria meningitidis are not known.
METHODS: Sera were obtained from the members of a household in seven countries of the African meningitis belt in which a pharyngeal carrier of N. meningitidis had been identified during a cross-sectional survey. Serum bactericidal antibody titres at baseline were compared between individuals in the household of the carrier who became a carrier of a meningococcus of the same genogroup during six months of subsequent follow-up and household members who did not become a carrier of a meningococcus of this genogroup during this period.
RESULTS: Serum bacterial antibody titres were significantly higher in carriers of a serogroup W or Y meningococcus at the time of recruitment than in those who were not a carrier of N. meningitidis of the same genogroup. Serum bactericidal antibody titres to a strain of N. meningitis of the same genogroup as the index cases were no different in individuals who acquired carriage with a meningococcus of the same genogroup as the index case than in those who did not become a carrier during six months of follow-up.
CONCLUSION: Serum bacterial antibody titres to N. meningitidis of genogroup W or Y in the range of those acquired by natural exposure to meningococci of these genogroups, or with cross-reactive bacteria, are not associated with protection against acquisition of carriage with meningococci of either of these genogroups.The MenAfriCar Consortium was supported by grants from the Wellcome Trust (086546) and the Bill & Melinda Gates Foundation (OPP51251)
The global meningitis genome partnership
GGenomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data
- âŠ