360 research outputs found

    Accuracy assessment and position correction for low-cost non-differential GPS as applied on an industrial peat bog

    Get PDF
    A low-cost, non-differentially corrected hand-held GPS receiver was tested on an industrial peat production bog. A correction procedure (‘pseudo-differential correction’) was derived that corrected data points to the nearest position on a line defining the centre of each 15-m wide field. The result was a corrected log of track points for each field for all points lying along the field. It was found that the mean orthogonal distance from a field centreline was linearly correlated with mean uncorrected GPS data error (r2=0.99) such that as GPS error increased so the accuracy obtained by correction decreased. For a signal with a mean uncorrected error of 30 m it was possible to reduce the error to 12 m. The results are discussed within the design requirements of a precision peat production system for peat energy. It is concluded that low-cost GPS could be used without differential correction as part of a precision peat production system because over 80% of the time positional error could be constrained to within 15 m. When compared with the perceived patterns of variability and the 30-m resolution of Landsat imagery which can be used for making application maps, this is acceptable

    Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage.</p> <p>Methods</p> <p>Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno<sub>[coreceptor]</sub>.</p> <p>Results</p> <p>Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno<sub>[coreceptor] </sub>(10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate.</p> <p>Conclusions</p> <p>The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.</p

    Th17-Related Genes and Celiac Disease Susceptibility

    Get PDF
    Th17 cells are known to be involved in several autoimmune or inflammatory diseases. In celiac disease (CD), recent studies suggest an implication of those cells in disease pathogenesis. We aimed at studying the role of genes relevant for the Th17 immune response in CD susceptibility. A total of 101 single nucleotide polymorphisms (SNPs), mainly selected to cover most of the variability present in 16 Th17-related genes (IL23R, RORC, IL6R, IL17A, IL17F, CCR6, IL6, JAK2, TNFSF15, IL23A, IL22, STAT3, TBX21, SOCS3, IL12RB1 and IL17RA), were genotyped in 735 CD patients and 549 ethnically matched healthy controls. Case-control comparisons for each SNP and for the haplotypes resulting from the SNPs studied in each gene were performed using chi-square tests. Gene-gene interactions were also evaluated following different methodological approaches. No significant results emerged after performing the appropriate statistical corrections. Our results seem to discard a relevant role of Th17 cells on CD risk

    Surveillance study of apparent life-threatening events (ALTE) in the Netherlands

    Get PDF
    SIDS and ALTE are different entities that somehow show some similarities. Both constitute heterogeneous conditions. The Netherlands is a low-incidence country for SIDS. To study whether the same would hold for ALTE, we studied the incidence, etiology, and current treatment of ALTE in The Netherlands. Using the Dutch Pediatric Surveillance Unit, pediatricians working in second- and third-level hospitals in the Netherlands were asked to report any case of ALTE presented in their hospital from January 2002 to January 2003. A questionnaire was subsequently sent to collect personal data, data on pregnancy and birth, condition preceding the incident, the incident itself, condition after the incident, investigations performed, monitoring or treatment initiated during admission, any diagnosis made at discharge, and treatment or parental support offered after discharge. A total of 115 cases of ALTE were reported, of which 110 questionnaires were filled in and returned (response rate 97%). Based on the national birth rate of 200,000, the incidence of ALTE amounted 0.58/1,000 live born infants. No deaths occurred. Clinical diagnoses could be assessed in 58.2%. Most frequent diagnoses were (percentages of the total of 110 cases) gastro-esophageal reflux and respiratory tract infection (37.3% and 8.2%, respectively); main symptoms were change of color and muscle tone, choking, and gagging. The differences in diagnoses are heterogeneous. In 34%, parents shook their infants, which is alarmingly high. Pre- and postmature infants were overrepresented in this survey (29.5% and 8.2%, respectively). Ten percent had recurrent ALTE. In total, 15.5% of the infants were discharged with a home monitor. In conclusion, ALTE has a low incidence in second- and third-level hospitals in the Netherlands. Parents should be systematically informed about the possible devastating effects of shaking an infant. Careful history taking and targeted additional investigations are of utmost importance

    On the biological relevance of MHC class II and B7 expression by tumour cells in melanoma metastases

    Get PDF
    A large number of studies have indicated that specific immune reactivity plays a crucial role in the control of malignant melanoma. In this context, expression of MHC I, MHC II and B7 molecules by melanoma cells is seen as relevant for the immune response against the tumour. For a better understanding of the biological relevance of MHC II and B7 expression by tumour cells in metastatic melanoma, we studied the expression of these molecules in melanoma metastases in relation to the inflammatory response, regression of the tumour and survival from 27 patients treated with biochemotherapy (30 mg m−2 Cisplatin and 250 mg m−2 decarbazine (dimethyl-triazene-imidazole-carboxamide, DTIC) on days 1–3 i.v., and 107 IU IFN-α2b 3 days a week s.c., q. 28d). In 19 out of 27 lesions studied, we found expression of MHC II by the tumour cells, while only in one out of 11 tumour biopsies obtained from untreated metastatic melanoma patients, MHC II expression was detected. Expression of B7.1 and B7.2 by tumour cells was found in nine out of 24 and 19 out of 24 lesions, respectively. In all cases where B7.1 expression was found, expression of B7.2 by the tumour cells was also seen. In general, no or only few inflammatory cells positive for B7 were found. Expression of MHC II by tumour cells was positively correlated with the presence of tumour-infiltrating lymphocytes, regression of the lesion, and with time to progression (TTP) and overall survival (OS) of the patient. However, no significant correlation between B7.1 or B7.2 expression and regression of the tumour, TTP or OS was found. In light of other recent findings, these data altogether do support a role as biomarker for MHC II expression by tumour cells; however, its exact immunological pathomechanism(s) remain to be established

    Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits

    Get PDF
    The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from “poor-sugar” environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae

    Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine

    Get PDF
    Intestinal microbiota plays an important role in human health, and its composition is determined by several factors, such as diet and host genotype. However, thus far it has remained unknown which host genes are determinants for the microbiota composition. We studied the diversity and abundance of dominant bacteria and bifidobacteria from the faecal samples of 71 healthy individuals. In this cohort, 14 were non-secretor individuals and the remainders were secretors. The secretor status is defined by the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucus and other secretions. It is determined by fucosyltransferase 2 enzyme, encoded by the FUT2 gene. Non-functional enzyme resulting from a nonsense mutation in the FUT2 gene leads to the non-secretor phenotype. PCR-DGGE and qPCR methods were applied for the intestinal microbiota analysis. Principal component analysis of bifidobacterial DGGE profiles showed that the samples of non-secretor individuals formed a separate cluster within the secretor samples. Moreover, bifidobacterial diversity (p<0.0001), richness (p<0.0003), and abundance (p<0.05) were significantly reduced in the samples from the non-secretor individuals as compared with those from the secretor individuals. The non-secretor individuals lacked, or were rarely colonized by, several genotypes related to B. bifidum, B. adolescentis and B. catenulatum/pseudocatenulatum. In contrast to bifidobacteria, several bacterial genotypes were more common and the richness (p<0.04) of dominant bacteria as detected by PCR-DGGE was higher in the non-secretor individuals than in the secretor individuals. We showed that the diversity and composition of the human bifidobacterial population is strongly associated with the histo-blood group ABH secretor/non-secretor status, which consequently appears to be one of the host genetic determinants for the composition of the intestinal microbiota. This association can be explained by the difference between the secretor and non-secretor individuals in their expression of ABH and Lewis glycan epitopes in the mucosa

    A systematic review of longitudinal studies on the association between depression and smoking in adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well-established that smoking and depression are associated in adolescents, but the temporal ordering of the association is subject to debate.</p> <p>Methods</p> <p>Longitudinal studies in English language which reported the onset of smoking on depression in non clinical populations (age 13-19) published between January 1990 and July 2008 were selected from PubMed, OVID, and PsychInfo databases. Study characteristics were extracted. Meta-analytic pooling procedures with random effects were used.</p> <p>Results</p> <p>Fifteen studies were retained for analysis. The pooled estimate for smoking predicting depression in 6 studies was 1.73 (95% CI: 1.32, 2.40; p < 0.001). The pooled estimate for depression predicting smoking in 12 studies was 1.41 (95% CI: 1.21, 1.63; p < 0.001). Studies that used clinical measures of depression were more likely to report a bidirectional effect, with a stronger effect of depression predicting smoking.</p> <p>Conclusion</p> <p>Evidence from longitudinal studies suggests that the association between smoking and depression is bidirectional. To better estimate these effects, future research should consider the potential utility of: (a) shorter intervals between surveys with longer follow-up time, (b) more accurate measurement of depression, and (c) adequate control of confounding.</p

    Exploring the Diversity of Plant DNA Viruses and Their Satellites Using Vector-Enabled Metagenomics on Whiteflies

    Get PDF
    Current knowledge of plant virus diversity is biased towards agents of visible and economically important diseases. Less is known about viruses that have not caused major diseases in crops, or viruses from native vegetation, which are a reservoir of biodiversity that can contribute to viral emergence. Discovery of these plant viruses is hindered by the traditional approach of sampling individual symptomatic plants. Since many damaging plant viruses are transmitted by insect vectors, we have developed “vector-enabled metagenomics” (VEM) to investigate the diversity of plant viruses. VEM involves sampling of insect vectors (in this case, whiteflies) from plants, followed by purification of viral particles and metagenomic sequencing. The VEM approach exploits the natural ability of highly mobile adult whiteflies to integrate viruses from many plants over time and space, and leverages the capability of metagenomics for discovering novel viruses. This study utilized VEM to describe the DNA viral community from whiteflies (Bemisia tabaci) collected from two important agricultural regions in Florida, USA. VEM successfully characterized the active and abundant viruses that produce disease symptoms in crops, as well as the less abundant viruses infecting adjacent native vegetation. PCR assays designed from the metagenomic sequences enabled the complete sequencing of four novel begomovirus genome components, as well as the first discovery of plant virus satellites in North America. One of the novel begomoviruses was subsequently identified in symptomatic Chenopodium ambrosiodes from the same field site, validating VEM as an effective method for proactive monitoring of plant viruses without a priori knowledge of the pathogens. This study demonstrates the power of VEM for describing the circulating viral community in a given region, which will enhance our understanding of plant viral diversity, and facilitate emerging plant virus surveillance and management of viral diseases
    corecore