91 research outputs found

    Polyphenol oxidase genes as integral part of the evolutionary history of domesticated tetraploid wheat.

    Get PDF
    Abstract Studying and understanding the genetic basis of polyphenol oxidases (PPO)-related traits plays a crucial role in genetic improvement of crops. A tetraploid wheat collection ( T. turgidum ssp., TWC) was analyzed using the 90K wheat SNP iSelect assay and phenotyped for PPO activity. A total of 21,347 polymorphic SNPs were used to perform genome-wide association analysis (GWA) in TWC and durum wheat sub-groups, detecting 23 and 85 marker-trait associations (MTA). In addition, candidate genes responsible for PPO activity were predicted. Based on the 23 MTAs detected in TWC, two haplotypes associated with low and high PPO activity were identified. Four SNPs were developed and validated providing one reliable marker (IWB75732) for marker assisted selection. The 23 MTAs were used to evaluate the genetic divergence ( FST > 0.25) between the T. turgidum subspecies , providing new information important for understanding the domestication process of Triticum turgidum ssp. and in particular of ssp. carthlicum

    Identification and characterization of the sucrose synthase 2 gene (Sus2) in durum wheat

    Get PDF
    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase (SUS), which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for SUS in durum wheat (cultivars Ciccio and Svevo) is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur, and 5-BIL42). The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modeling approaches. The combined results of sucrose synthase 2 expression and activity levels were then considered in the light of their possible involvement in starch yield

    Biocompatible cellulose nanocrystal-based Trojan horse enables targeted delivery of nano-Au radiosensitizers to triple negative breast cancer cells

    Get PDF
    : A hybrid cellulose-based programmable nanoplatform for applications in precision radiation oncology is described. Here, sugar heads work as tumor targeting moieties and steer the precise delivery of radiosensitizers, i.e. gold nanoparticles (AuNPs) into triple negative breast cancer (TNBC) cells. This "Trojan horse" approach promotes a specific and massive accumulation of radiosensitizers in TNBC cells, thus avoiding the fast turnover of small-sized AuNPs and the need for high doses of AuNPs for treatment. Application of X-rays resulted in a significant increase of the therapeutic effect while delivering the same dose, showing the possibility to use roughly half dose of X-rays to obtain the same radiotoxicity effect. These data suggest that this hybrid nanoplatform acts as a promising tool for applications in enhancing cancer radiotherapy effects with lower doses of X-rays

    Genetic dissection of the relationships between grain yield components by genome-wide association mapping in a collection of tetraploid wheats

    Get PDF
    Increasing grain yield potential in wheat has been a major target of most breeding programs. Genetic advance has been frequently hindered by negative correlations among yield components that have been often observed in segregant populations and germplasm collections. A tetraploid wheat collection was evaluated in seven environments and genotyped with a 90K SNP assay to identify major and stable quantitative trait loci (QTL) for grain yield per spike (GYS), kernel number per spike (KNS) and thousand-kernel weight (TKW), and to analyse the genetic relationships between the yield components at QTL level. The genome-wide association analysis detected eight, eleven and ten QTL for KNS, TKW and GYS, respectively, significant in at least three environments or two environments and the mean across environments. Most of the QTL for TKW and KNS were found located in different marker intervals, indicating that they are genetically controlled independently by each other. Out of eight KNS QTL, three were associated to significant increases of GYS, while the increased grain number of five additional QTL was completely or partially compensated by decreases in grain weight, thus producing no or reduced effects on GYS. Similarly, four consistent and five suggestive TKW QTL resulted in visible increase of GYS, while seven additional QTL were associated to reduced effects in grain number and no effects on GYS. Our results showed that QTL analysis for detecting TKW or KNS alleles useful for improving grain yield potential should consider the pleiotropic effects of the QTL or the association to other QTLs

    Quality characteristics of parental lines of wheat mapping populations

    Get PDF
    The aim of this work was to evaluate the main quality traits in the parental lines of wheat segregating populations to identify the best for subsequent genetic mapping of the traits. Significant differences (p < 0.001) among wheat genotypes were observed. Many of the examined crosses appeared to be suitable for the purpose, showing differences among parental lines as high as 4.6% for protein content, 6.4% for gluten content, 69 for gluten index, 50 mL for sodium dodecyl sulphate sedimentation volume, and 33.9 g for thousand-kernel weight, whereas differences accounting for 4.8, 2.4, and 7.3 were observed for yellow index, red index and brown index, respectively. The results pointed out that for studying at the same time the quantitative and qualitative features of gluten, the wheat populations derived from Latino x MG29896 and Saragolla x 02-5B-318 could be particularly appropriate. In addition, the latter cross was suitable to deepen the knowledge of yellow index regulation

    The Potential of Apulian Olive Biodiversity: The Case of Oliva Rossa Virgin Olive Oil

    No full text
    In this study, the drupes and virgin olive oils extracted from the Oliva Rossa landrace are characterized. Oliva Rossa is an old landrace part of the autochthonous Apulian olive germplasm for which only few data have been reported till now. During the study, the maturity patterns of the drupes had been followed. Four samplings per year were planned, one every 14 days starting from the middle of October. The pigmentation index, the oil content and the total phenolic content of the drupes were measured. Simultaneously, virgin olive oils were extracted at the lab scale and analyzed for the fatty acid composition, the basic quality parameters and the content of minor compounds. The pigmentation pattern of the drupes was different among the years and, despite this trend, at the third sampling time the stage of maximum oil accumulation was always over. The extracted virgin olive oils had a medium to high level of oleic acid. With colder temperatures, a higher level of monounsaturated fatty acids, oleic/linoleic ratio and antioxidants was observed. The phenolic profile was dominated by 3,4-DPHEA-EDA and p-HPEA-EDA while the volatile profile by (E)-2-hexenal and 3-ethyl-1,5-octadiene
    corecore