2,510 research outputs found
Alternatively Spliced EDA Segment Regulates Fibronectin-dependent Cell Cycle Progression and Mitogenic Signal Transduction
This research was originally published in the Journal of Biological Chemistry. Ri-ichiroh Manabe, Naoko Oh-e and Kiyotoshi Sekiguchi. Alternatively Spliced EDA Segment Regulates Fibronectin-dependent Cell Cycle Progression and Mitogenic Signal Transduction. J. Biol. Chem. 1999; 274: 5919-5924 © the American Society for Biochemistry and Molecular Biolog
A Cryptographic Moving-Knife Cake-Cutting Protocol
This paper proposes a cake-cutting protocol using cryptography when the cake
is a heterogeneous good that is represented by an interval on a real line.
Although the Dubins-Spanier moving-knife protocol with one knife achieves
simple fairness, all players must execute the protocol synchronously. Thus, the
protocol cannot be executed on asynchronous networks such as the Internet. We
show that the moving-knife protocol can be executed asynchronously by a
discrete protocol using a secure auction protocol. The number of cuts is n-1
where n is the number of players, which is the minimum.Comment: In Proceedings IWIGP 2012, arXiv:1202.422
Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle
We reconsider the problem of the stability of the thermohaline circulation as
described by a two-dimensional Boussinesq model with mixed boundary conditions.
We determine how the stability properties of the system depend on the intensity
of the hydrological cycle. We define a two-dimensional parameters' space
descriptive of the hydrology of the system and determine, by considering
suitable quasi-static perturbations, a bounded region where multiple equilibria
of the system are realized. We then focus on how the response of the system to
finite-amplitude surface freshwater forcings depends on their rate of increase.
We show that it is possible to define a robust separation between slow and fast
regimes of forcing. Such separation is obtained by singling out an estimate of
the critical growth rate for the anomalous forcing, which can be related to the
characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy
Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling
The recently discovered exoplanet Gl581d is extremely close to the outer edge
of its system's habitable zone, which has led to much speculation on its
possible climate. We have performed a range of simulations to assess whether,
given simple combinations of chemically stable greenhouse gases, the planet
could sustain liquid water on its surface. For best estimates of the surface
gravity, surface albedo and cloud coverage, we find that less than 10 bars of
CO2 is sufficient to maintain a global mean temperature above the melting point
of water. Furthermore, even with the most conservative choices of these
parameters, we calculate temperatures above the water melting point for CO2
partial pressures greater than about 40 bar. However, we note that as Gl581d is
probably in a tidally resonant orbit, further simulations in 3D are required to
test whether such atmospheric conditions are stable against the collapse of CO2
on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy &
Astrophysic
An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation
Recent model results have suggested that there may be a scalar indicator ? monitoring whether the Atlantic meridional overturning circulation (MOC) is in a multiple equilibrium regime. The quantity ? is based on the net freshwater transport by the MOC into the Atlantic basin. It changes sign as soon as the steady Atlantic MOC enters the multiple equilibrium regime because of an increased freshwater input in the northern North Atlantic. This paper addresses the issue of why the sign of ? is such a good indicator for the multiple equilibrium regime. Changes in the Atlantic freshwater budget over a complete bifurcation diagram and in finite amplitude perturbation experiments are analyzed in a global ocean circulation model. The authors show that the net anomalous freshwater transport into or out of the Atlantic, resulting from the interactions of the velocity perturbations and salinity background field, is coupled to the background (steady state) state freshwater budget and hence to ?. The sign of ? precisely shows whether this net anomalous freshwater transport is stabilizing or destabilizing the MOC. Therefore, it can indicate whether the MOC is in a single or multiple equilibrium regime.<br/
Angle-resolved photoemission study of MX-chain compound [Ni(chxn)Br]Br
We report on the results of angle-resolved photoemission experiments on a
quasi-one-dimensional -chain compound [Ni(chxn)Br]Br (chxn =
1,2-cyclohexanediamine), a one-dimensional Heisenberg system with
and K, which shows a gigantic non-linear optical effect. A "band"
having about 500 meV energy dispersion is found in the first half of the
Brillouin zone , but disappears at . Two
dispersive features, expected from the spin-charge separation, as have been
observed in other quasi-one-dimensional systems like SrCuO, are not
detected. These characteristic features are well reproduced by the -
chain model calculations with a small charge-transfer energy compared
with that of one-dimensional Cu-O based compounds. We propose that this smaller
is the origin of the absence of clear spin- and charge-separation in
the photoemission spectra and strong non-linear optical effect in
[Ni(chxn)Br]Br.Comment: 4 pages, 3 figure
Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson
The high density Frenkel exciton which interacts with a single mode
microcavity field is dealed with in the framework of the q-deformed boson. It
is shown that the q-defomation of bosonic commutation relations is satisfied
naturally by the exciton operators when the low density limit is deviated. An
analytical expression of the physical spectrum for the exciton is given by
using of the dressed states of the cavity field and the exciton. We also give
the numerical study and compare the theoretical results with the experimental
resultsComment: 6 pages, 2 figure
Study of impurities in spin-Peierls systems including lattice relaxation
The effects of magnetic and non-magnetic impurities in spin-Peierls systems
are investigated allowing for lattice relaxation and quantum fluctuations. We
show that, in isolated chains, strong bonds form next to impurities, leading to
the appearance of magneto-elastic solitons. Generically, these solitonic
excitations do not bind to impurities. However, interchain elastic coupling
produces an attractive potential at the impurity site which can lead to the
formation of bound states. In addition, we predict that small enough chain
segments do not carry magnetic moments at the ends
Angular momentum spatial distribution symmetry breaking in Rb by an external magnetic field
Excited state angular momentum alignment -- orientation conversion for atoms
with hyperfine structure in presence of an external magnetic field is
investigated. Transversal orientation in these conditions is reported for the
first time. This phenomenon occurs under Paschen Back conditions at
intermediate magnetic field strength. Weak radiation from a linearly polarized
diode laser is used to excite Rb atoms in a cell. The laser beam is polarized
at an angle of pi/4 with respect to the external magnetic field direction.
Ground state hyperfine levels of the 5S_1/2 state are resolved using
laser-induced fluorescence spectroscopy under conditions for which all excited
5P_3/2 state hyperfine components are excited simultaneously. Circularly
polarized fluorescence is observed to be emitted in the direction perpendicular
to both to the direction of the magnetic field B and direction of the light
polarization E. The obtained circularity is shown to be in quantitative
agreement with theoretical predictions.Comment: Accepted for publication in Phys. Rev.
Decay rate and renormalized frequency shift of a quantum wire Wannier exciton in a planar microcavity
The superradiant decay rate and frequency shift of a Wannier exciton in a
one-dimensional quantum wire are studied. It is shown that the dark mode
exciton can be examined experimentally when the quantum wire is embedded in a
planar microcavity. It is also found that the decay rate is greatly enhanced as
the cavity length is equal to the multiple wavelength of the emitted
photon. Similar to its decay rate counterpart, the frequency shift also shows
discontinuities at resonant modes.Comment: 12 pages, 2 figures. To appear in P. R. B. September 200
- âŠ