36 research outputs found

    Fast preparation route to high-performances textured Sr-doped Ca 3 Co 4 O 9 thermoelectric materials through precursor powder modification

    Get PDF
    This work presents a short and very efficientmethod to produce high performance textured Ca3Co4O9thermoelectric materials through initial powders modifica-tion. Microstructure has shown good grain orientation, andlow porosity while slightly lower grain sizes were obtained insamples prepared from attrition milled powders. All samplesshow the high density of around 96% of the theoretical value.These similar characteristics are reflected in, approximately,the same electrical resistivity and Seebeck coefficient valuesfor both types of samples. However, in spite of similar powerfactor (PF) at low temperatures, it is slightly higher at hightemperature for the attrition milled samples. On the otherhand, the processing time reduction (from 38 to 2 h) whenusing attrition milled precursors, leads to lower mechanicalproperties in these samples. All these data clearly point out tothe similar characteristics of both kinds of samples, with adrastic processing time decrease when using attrition milledprecursors, which is of the main economic importance whenconsidering their industrial production

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world
    corecore