465 research outputs found

    Warm needle acupuncture for osteoarthritis: A systematic review and meta-analysis.

    Get PDF
    Warm needle acupuncture (WA) is considered a potential intervention in the treatment of osteoarthritis (OA). To systematically evaluate the clinical efficacy and safety of WA in the treatment of OA. Systematic review and meta-analysis METHODS: Fourteen databases were searched from their inception until May 2022. Randomized controlled trials (RCTs) of WA for treating OA were identified. Study selection and data extraction were performed by two independent reviewers. The Cochrane risk of bias tool and the Grading of Recommendations Assessment, Development and Evaluation program were used to assess all included RCTs. A total of 66 RCTs met the inclusion criteria for this review. Most of the included studies had an unclear risk of bias, and the certainty of the evidence was very low. Twenty-four RCTs compared the effects of WA with those of oral drug therapies. Meta-analysis showed superior effects of WA for the total effective rate (risk ratio (RR): 1.22, 95% confidence interval (CI): 1.17 to 1.27, I  = 26%, p < 0.001, 24 studies, n = 2278), pain, and function. Eight RCTs compared the effects of WA+drug therapy, and meta-analysis showed favorable effects for the total effective rate (RR: 1.27, 95% CI: 1.18 to 1.35, I =0%, p < 0.001, 8 studies, n = 646). Eight RCTs compared the effects of WA and intra-articular sodium hyaluronate (IASH) injection on OA and found equivalent effects of WA on the symptoms of OA. Twenty-eight RCTs compared the effects of WA+IASH injection with those of IASH injection, and meta-analysis showed superior effects of WA+IASH in terms of the total effective rate (RR: 1.15, 95% CI: 1.11 to 1.19, I =27.3%, p < 0.001, 25 studies, n = 2208), pain, and function. None of the RCTs reported serious adverse events. WA may have some distinct advantages in the treatment of OA. However, well-designed RCTs with larger sample sizes are needed. [Abstract copyright: Copyright © 2022 The Author(s). Published by Elsevier GmbH.. All rights reserved.

    On the Orthogonal Stability of the Pexiderized Quadratic Equation

    Full text link
    The Hyers--Ulam stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)+2h(y), x\perp y is established where \perp is a symmetric orthogonality in the sense of Ratz and f is odd.Comment: 10 pages, Latex; Changed conten

    Nonmesonic weak decay spectra of Λ4^4_\LambdaHe

    Full text link
    To comprehend the recent Brookhaven National Laboratory experiment E788 on Λ4^4_\LambdaHe, we have outlined a simple theoretical framework, based on the independent-particle shell model, for the one-nucleon-induced nonmesonic weak decay spectra. Basically, the shapes of all the spectra are tailored by the kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged here by the one-meson-exchange-potential. In spite of the straightforwardness of the approach a good agreement with data is acheived. This might be an indication that the final-state-interactions and the two-nucleon induced processes are not very important in the decay of this hypernucleus. We have also found that the π+K\pi+K exchange potential with soft vertex-form-factor cutoffs (Λπ0.7(\Lambda_\pi \approx 0.7 GeV, ΛK0.9\Lambda_K \approx 0.9 GeV), is able to account simultaneously for the available experimental data related to Γp\Gamma_p and Γn\Gamma_n for Λ4^4_\LambdaH, Λ4^4_\LambdaHe, and Λ5^5_\LambdaHe.Comment: 12 pages, 4 figures, 1 table, submitted for publication; v2: major revision, 18 pages, one author added, table, figures and bibliography change

    Fermionic partner of Quintessence field as candidate for dark matter

    Full text link
    Quintessence is a possible candidate for dark energy. In this paper we study the phenomenologies of the fermionic partner of Quintessence, the Quintessino. Our results show that, for suitable choices of the model parameters, the Quintessino is a good candidate for cold or warm dark matter. In our scenario, dark energy and dark matter of the Universe are connected in one chiral superfield.Comment: 4 pages, 3 figures, version to appear in PR

    Giant Shapiro steps for two-dimensional Josephson-junction arrays with time-dependent Ginzburg-Landau dynamics

    Full text link
    Two-dimensional Josephson junction arrays at zero temperature are investigated numerically within the resistively shunted junction (RSJ) model and the time-dependent Ginzburg-Landau (TDGL) model with global conservation of current implemented through the fluctuating twist boundary condition (FTBC). Fractional giant Shapiro steps are found for {\em both} the RSJ and TDGL cases. This implies that the local current conservation, on which the RSJ model is based, can be relaxed to the TDGL dynamics with only global current conservation, without changing the sequence of Shapiro steps. However, when the maximum widths of the steps are compared for the two models some qualitative differences are found at higher frequencies. The critical current is also calculated and comparisons with earlier results are made. It is found that the FTBC is a more adequate boundary condition than the conventional uniform current injection method because it minimizes the influence of the boundary.Comment: 6 pages including 4 figures in two columns, final versio

    The DNDN, πΣc\pi \Sigma_c interaction in finite volume and the Λc(2595)\Lambda_c(2595) resonance

    Full text link
    In this work the interaction of the coupled channels DNDN and πΣc\pi \Sigma_c in an SU(4) extrapolation of the chiral unitary theory, where the Λc(2595)\Lambda_c(2595) resonance appears as dynamically generated from that interaction, is extended to produce results in finite volume. Energy levels in the finite box are evaluated and, assuming that they would correspond to lattice results, the inverse problem of determining the phase shifts in the infinite volume from the lattice results is solved. We observe that it is possible to obtain accurate πΣc\pi \Sigma_c phase shifts and the position of the Λc(2595)\Lambda_c(2595) resonance, but it requires the explicit consideration of the two coupled channels. We also observe that some of the energy levels in the box are attached to the closed DNDN channel, such that their use to induce the πΣc\pi \Sigma_c phase shifts via L\"uscher's formula leads to incorrect results.Comment: 10 pages, 13 figures, accepted for publication in Eur. Phys. J.

    Thermal leptogenesis in a model with mass varying neutrinos

    Full text link
    In this paper we consider the possibility of neutrino mass varying during the evolution of the Universe and study its implications on leptogenesis. Specifically, we take the minimal seesaw model of neutrino masses and introduce a coupling between the right-handed neutrinos and the dark energy scalar field, the Quintessence. In our model, the right-handed neutrino masses change as the Quintessence scalar evolves. We then examine in detail the parameter space of this model allowed by the observed baryon number asymmetry. Our results show that it is possible to lower the reheating temperature in this scenario in comparison with the case that the neutrino masses are unchanged, which helps solve the gravitino problem. Furthermore, a degenerate neutrino mass patten with mim_i larger than the upper limit given in the minimal leptogenesis scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Compressibility Effect on the Rayleigh–Taylor Instability with Sheared Magnetic Fields

    Get PDF
    We study the effect of plasma compressibility on the Rayleigh–Taylor instability of a magnetic interface with a sheared magnetic field. We assume that the plasma is ideal and the equilibrium quantities are constant above and below the interface. We derive the dispersion equation. Written in dimensionless variables, it contains seven dimensionless parameters: the ratio of plasma densities above and below the interface ζζ, the ratio of magnetic field magnitude squared χχ, the shear angle αα, the plasma beta above and below the interface, β2β2 and β1β1, the angle between the perturbation wave number and the magnetic field direction above the interface ϕϕ, and the dimensionless wave number κκ. Only six of these parameters are independent because χχ, β1β1, and β2β2 are related by the condition of total pressure continuity at the interface. Only perturbations with the wave number smaller than the critical wave number are unstable. The critical wave number depends on ϕϕ, but it is independent of β1β1 and β2β2, and is the same as that in the incompressible plasma approximation. The dispersion equation is solved numerically with ζ=100ζ=100, χ=1χ=1, and β1=β2=ββ1=β2=β. We obtain the following results. When ββ decreases, so does the maximum instability increment. However, the effect is very moderate. It is more pronounced for high values of αα. We also calculate the dependence on ϕϕ of the maximum instability increment with respect to κκ. The instability increment takes its maximum at ϕ=ϕmϕ=ϕm. Again, the decrease of ββ results in the reduction of the instability increment. This reduction is more pronounced for high values of |ϕ−ϕm||ϕ−ϕm|. When both αα and |ϕ−ϕm||ϕ−ϕm| are small, the reduction effect is practically negligible. The theoretical results are applied to the magnetic Rayleigh–Taylor instability of prominence threads in the solar atmosphere

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore