58 research outputs found

    iCub robot modelling and control of its biped locomotion

    Get PDF

    Rehabilitation system for paraplegic patients using mind machine interface; a conceptual framework

    Get PDF
    Mind-Machine Interface (MMI) is a newly surfaced term in the field of control engineering and rehabilitation systems. This technique, coupled with the existing functional electrical stimulation (FES) systems, can be very beneficial for effective rehabilitation of disabled patients. This paper presents a conceptual framework for the development of MMI based FES systems for therapeutic aid and function restoration in spinal cord injured (SCI) paraplegic patients. It is intended to acquire thought modulated signals from human brain and then use these signals to command and control FES as desired by the patient. The proposed setup can significantly assist the rehabilitation and recovery of paraplegic patients due to the ease of control for the user

    Smart Home Control for Disabled Using Brain Computer Interface

    Get PDF
    Electroencephalography (EEG) based smart home control system is one of the major applications of Brain Computer Interface (BCI) that allows disabled people to maximize their capabilities at home. A Brain Computer Interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. In this project, the scope includes Graphical User Interface (GUI) acts as a control and monitoring system for home appliances which using BCI as an input. Hence, NeuroSky MindWave headset is used to detect EEG signal from brain. Furthermore, a prototype model is developed using Raspberry Pi 3 Model B+, 4 channels 5V relay module, light bulb and fan. The raw data signal from brain wave is being extracted to operate the home appliances. Besides, the results agree well with the command signal used during the experiment. Lastly, the developed system can be easily implemented in smart homes and has high potential to be used in smart automation

    A review on the clinical implementation of respiratory-gated radiation therapy

    Get PDF
    Respiratory-gated treatment techniques have been introduced into the radiation oncology practice to manage target or organ motions. This paper will review the implementation of this type of gated treatment technique where the respiratory cycle is determined using an external marker. The external marker device is placed on the abdominal region between the xyphoid process and the umbilicus of the patient. An infrared camera tracks the motion of the marker to generate a surrogate for the respiratory cycle. The relationship, if any, between the respiratory cycle and the movement of the target can be complex. The four-dimensional computed tomography (4DCT) scanner is used to identify this motion for those patients that meet three requirements for the successful implementation of respiratory-gated treatment technique for radiation therapy. These requirements are (a) the respiratory cycle must be periodic and maintained during treatment, (b) the movement of the target must be related to the respiratory cycle, and (c) the gating window can be set sufficiently large to minimise the overall treatment time or increase the duty cycle and yet small enough to be within the gate. If the respiratory-gated treatment technique is employed, the end-expiration image set is typically used for treatment planning purposes because this image set represents the phase of the respiratory cycle where the anatomical movement is often the least for the longest time. Contouring should account for tumour residual motion, setup uncertainty, and also allow for deviation from the expected respiratory cycle during treatment. Respiratory-gated intensity-modulated radiation therapy (IMRT) treatment plans must also be validated prior to treatment. Quality assurance should be performed to check for positional changes and the output in association with the motion-gated technique. To avoid potential treatment errors, radiation therapist (radiographer) should be regularly in-serviced and made aware of the need to invoke the gating feature when prescribed for selected patients

    Pharmacophore-based molecular docking and in-silico study of novel usnic acid derivatives as avian influenza A (H7N9) inhibitor

    Get PDF
    The Avian Influenza virus is not only dangerous to birds, but it is also dangerous to people and other animals. It is a serious danger to poultry worldwide with the capacity to spread to other species, including people; consequently, more efficient medicines are required to treat this virus. This study examined the binding effectiveness of twentyone (21) Usnic acid derivatives out of 340 generated via pharmacophore filtering with AIV A (H7N9) utilising an in-silico technique. The docking simulation to AIV A obtained five compounds with a high affinity to the target protein. The ADMET and druggability prediction produced two lead molecules that were then submitted to Cytochrome (CYP) P450 enzyme screening to generate the best molecule, labelled as compound 5. According to the findings, compound 5 might be employed as a lead inhibitor in developing an anti-AIV medicatio

    In silico evaluation of usnic acid derivatives to discover potential antibacterial drugs against DNA gyrase B and DNA topoisomerase IV

    Get PDF
    Due to the rising increase in infectious diseases brought on by bacteria and anti-bacterial drug resistance, antibacterial therapy has become difficult. The majority of first-line antibiotics are no longer effective against numerous germs, posing a new hazard to global human health in the 21st century. Through the drug-likeness screening, 184 usnic acid derivatives were selected from an in-house database of 340 usnic acid compounds. The pharmacokinetics (ADMET) prediction produced fifteen hit compounds, of which the lead molecule was subsequently obtained through a molecular docking investigation. The lead compounds, labelled compound-277 and compound-276, respectively, with the substantial binding affinity towards the enzymes were obtained through further docking simulation on the DNA gyrase and DNA topoisomerase proteins. Additionally, molecular dynamic (MD) simulation was performed for 300 ns on the lead compounds in order to confirm the stability of the docked complexes and the binding pose discovered during docking tests. Due to their intriguing pharmacological characteristics, these substances may be promising therapeutic candidate for anti-bacterial medication
    corecore