1,505 research outputs found

    The role of Lambda in the cosmological lens equation

    Full text link
    The cosmological constant Lambda affects cosmological gravitational lensing. Effects due to Lambda can be studied in the framework of the Schwarzschild-de Sitter spacetime. Two novel contributions, which can not be accounted for by a proper use of angular diameter distances, are derived. First, a term 2m b Lambda/3 has to be added to the bending angle, where "m" is the lens mass and "b" the impact parameter. Second, Lambda brings about a difference in the redshifts of multiple images. Both effects are quite small for real astrophysical systems (contribution to the bending < 0.1 microarcsec and difference in redshift < 10^{-7}).Comment: 4 pages. (Univ. Zuerich); v2: presentation improved, discussion extended, references to papers posted after the v1-version added. In press on Phys. Rev. Let

    Detection of large scale intrinsic ellipticity-density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys

    Full text link
    The power spectrum of weak lensing shear caused by large-scale structure is an emerging tool for precision cosmology, in particular for measuring the effects of dark energy on the growth of structure at low redshift. One potential source of systematic error is intrinsic alignments of ellipticities of neighbouring galaxies (II correlation) that could mimic the correlations due to lensing. A related possibility pointed out by Hirata and Seljak (2004) is correlation between the intrinsic ellipticities of galaxies and the density field responsible for gravitational lensing shear (GI correlation). We present constraints on both the II and GI correlations using 265 908 spectroscopic galaxies from the SDSS, and using galaxies as tracers of the mass in the case of the GI analysis. The availability of redshifts in the SDSS allows us to select galaxies at small radial separations, which both reduces noise in the intrinsic alignment measurement and suppresses galaxy- galaxy lensing (which otherwise swamps the GI correlation). While we find no detection of the II correlation, our results are nonetheless statistically consistent with recent detections found using the SuperCOSMOS survey. In contrast, we have a clear detection of GI correlation in galaxies brighter than L* that persists to the largest scales probed (60 Mpc/h) and with a sign predicted by theoretical models. This correlation could cause the existing lensing surveys at z~1 to underestimate the linear amplitude of fluctuations by as much as 20% depending on the source sample used, while for surveys at z~0.5 the underestimation may reach 30%. (Abridged.)Comment: 16 pages, matches version published in MNRAS (only minor changes in presentation from original version

    Light Deflection, Lensing, and Time Delays from Gravitational Potentials and Fermat's Principle in the Presence of a Cosmological Constant

    Full text link
    The contribution of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's Principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new Λ\Lambda-term in the bending angle and the lens equation. The consequences on time delay expressions are explored. While it is known that Λ\Lambda contributes to the gravitational time delay, it is shown here that a new Λ\Lambda-term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the Λ\Lambda contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.Comment: 6 pages, 1 figure, matches version published in PR

    Investigation of Aluminum-Stainless Steel Dissimilar Weld Quality using Different Filler Metals

    Get PDF
    Aluminum-stainless steel dissimilar welding processes yield unwanted disadvantages in the weld joint due to the large difference between the aluminum-stainless steel sheets’ melting points and the nearly zero solid solubility between these two metals. Aluminum AA6061 and stainless steel SUS304 were lap-welded by using Metal Inert Gas (MIG) welding with aluminum filler ER5356 (Group 1) and stainless steel filler ER308LSi (Group 2). The effects of the welding voltage and type of filler metals used on the weld joints were studied. The welding voltage had a significant effect on the welding process, as higher voltage resulted in poorer appearance of the weld joint and led to defects for both groups, such as porosity and incomplete fusion. The microstructure for Group 1 joints shows enrichment of Si particles, which benefited the joint properties as it increased the strength of the metal. The stainless steel substrates that spread into the aluminum side are much greater in volume for Group 1 than for Group 2 joints. Meanwhile, the microstructure of Group 2 joints (using ER308LSi filler) consists of chromium carbide precipitation which yields a high hardness value, but a brittle structure. The hardness values of the welded seams in Group 1 and Group 2 range from 60 to 100 HV and 160 to 230 HV, respectively. The fracture in the tensile test yielded the highest tensile strength of 104.4 MPa with aluminum fillers. The tensile strength of Group 1 joints ranging from 47.8 to 104.4 MPa was collectively higher than Group 2 joints, between 20.24 to 61.76 MPa. Based on the investigation throughout this study, it can be concluded that the welding voltage of 18 V and aluminum filler ER5356 is the optimum filler in joining the dissimilar metals aluminum AA6061 and stainless steel SUS 304

    Mechanical and thermal properties of sugar palm fiber reinforced thermoplastic polyurethane composites: effect of silane treatment and fiber loading

    Get PDF
    The aim of the present study was to develop sugar palm fiber (SPF) reinforced thermoplastic polyurethane (TPU) composites and to investigate the effects of fiber surface modification by 2% silane treatment and fiber loading (0, 10, 20, 30, 40 and 50 wt%) on the mechanical and thermal properties of the obtained composites. Surface treatment was employed to improve the fiber-matrix interface, which was expected to boost the mechanical strength of the composites, in terms of tensile, flexural and impact properties. Thermal properties were also investigated by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to assess the thermal stability of the developed composites. Furthermore, scanning electron microscopy (SEM) was used to study the tensile fracture samples of composites with a view towards evaluating the effects of fiber surface treatments on the fiber/matrix interfacial bonding. The findings of this study reveal that the silane treatment has determined good bonding and linkage of the cellulose fiber to the TPU matrix, hence contributing to enhanced mechanical and thermal properties of the composites. The composite formulation with 40 wt% sugar palm fiber loading showed optimum values such as 17.22 MPa for tensile, 13.96 MPa for flexural, and 15.47 kJ/m2 for impact strength. Moreover, the formulations with higher fiber content exhibited satisfactory values of storage modulus and thermal degradation, while their good interfacial adhesion was evidenced by SEM images

    Strong lensing in the Einstein-Straus solution

    Full text link
    We analyse strong lensing in the Einstein-Straus solution with positive cosmological constant. For concreteness we compare the theory to the light deflection of the lensed quasar SDSS J1004+4112.Comment: 14 pages, 3 figures, 5 tables. To the memory of J\"urgen Ehlers v2 contains a note added during publication in GRG and less typo

    The Tolman VII solution, trapped null orbits and w - modes

    Get PDF
    The Tolman VII solution is an exact static spherically symmetric perfect fluid solution of Einstein's equations that exhibits a surprisingly good approximation to a neutron star. We show that this solution exhibits trapped null orbits in a causal region even for a tenuity (total radius to mass ratio) >3> 3. In this region the dynamical part of the potential for axial w - modes dominates over the centrifugal part.Comment: 5 pages revtex. 10 figures png. Further information at http://grtensor.phy.queensu.ca/tolmanvii

    experimental study of hydrogen embrittlement in maraging steels

    Get PDF
    Abstract This research activity aims at investigating the hydrogen embrittlement of Maraging steels in connection to real sudden failures of some of the suspension blades of the Virgo Project experimental apparatus. Some of them failed after 15 years of service in working conditions. Typically, in the Virgo detector, blades are loaded up to 50-60% of the material yield strength. For a deeper understanding of the failure, the relationship between hydrogen concentration and mechanical properties of the material, have been investigated with specimens prepared in order to simulate blade working conditions. A mechanical characterization of the material has been carried out by standard tensile testing in order to establish the effect of hydrogen content on the material strength. Further experimental activity was executed in order to characterize the fracture surface and to measure the hydrogen content. Finally, some of the failed blades have been analyzed in DICI-UNIPI laboratory. The experimental results show that the blades failure can be related with the hydrogen embrittlement phenomenon
    corecore