243 research outputs found
Detecting Neutrino Magnetic Moments with Conducting Loops
It is well established that neutrinos have mass, yet it is very difficult to
measure those masses directly. Within the standard model of particle physics,
neutrinos will have an intrinsic magnetic moment proportional to their mass. We
examine the possibility of detecting the magnetic moment using a conducting
loop. According to Faraday's Law of Induction, a magnetic dipole passing
through a conducting loop induces an electromotive force, or EMF, in the loop.
We compute this EMF for neutrinos in several cases, based on a fully covariant
formulation of the problem. We discuss prospects for a real experiment, as well
as the possibility to test the relativistic formulation of intrinsic magnetic
moments.Comment: 6 pages, 4 b/w figures, uses RevTe
Random projections and the optimization of an algorithm for phase retrieval
Iterative phase retrieval algorithms typically employ projections onto
constraint subspaces to recover the unknown phases in the Fourier transform of
an image, or, in the case of x-ray crystallography, the electron density of a
molecule. For a general class of algorithms, where the basic iteration is
specified by the difference map, solutions are associated with fixed points of
the map, the attractive character of which determines the effectiveness of the
algorithm. The behavior of the difference map near fixed points is controlled
by the relative orientation of the tangent spaces of the two constraint
subspaces employed by the map. Since the dimensionalities involved are always
large in practical applications, it is appropriate to use random matrix theory
ideas to analyze the average-case convergence at fixed points. Optimal values
of the gamma parameters of the difference map are found which differ somewhat
from the values previously obtained on the assumption of orthogonal tangent
spaces.Comment: 15 page
Phasing diffuse scattering. Application of the SIR2002 algorithm to the non-crystallographic phase problem
A new phasing algorithm has been used to determine the phases of diffuse
elastic X-ray scattering from a non-periodic array of gold balls of 50 nm
diameter. Two-dimensional real-space images, showing the charge-density
distribution of the balls, have been reconstructed at 50 nm resolution from
transmission diffraction patterns recorded at 550 eV energy. The reconstructed
image fits well with scanning electron microscope (SEM) image of the same
sample. The algorithm, which uses only the density modification portion of the
SIR2002 program, is compared with the results obtained via the
Gerchberg-Saxton-Fienup HIO algorithm. In this way the relationship between
density modification in crystallography and the HiO algorithm used in signal
and image processing is elucidated.Comment: 7 pages, 12 figure
Analytical evaluation of atomic form factors: application to Rayleigh scattering
Atomic form factors are widely used for the characterization of targets and
specimens, from crystallography to biology. By using recent mathematical
results, here we derive an analytical expression for the atomic form factor
within the independent particle model constructed from nonrelativistic screened
hydrogenic wavefunctions. The range of validity of this analytical expression
is checked by comparing the analytically obtained form factors with the ones
obtained within the Hartee-Fock method. As an example, we apply our analytical
expression for the atomic form factor to evaluate the differential cross
section for Rayleigh scattering off neutral atoms.Comment: 7 pages, 1 figur
Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease
Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer’s disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing
Third structure determination by powder diffractometry round robin (SDPDRR-3)
The results from a third structure determination by powder diffractometry (SDPD) round robin are discussed. From the 175 potential participants having downloaded the powder data, nine sent a total of 12 solutions (8 and 4 for samples 1 and 2, respectively, a tetrahydrated calcium tartrate and a lanthanum tungstate). Participants used seven different computer programs for structure solution (ESPOIR, EXPO, FOX, PSSP, SHELXS, SUPERFLIP, and TOPAS), applying Patterson, direct methods, direct space methods, and charge flipping approach. It is concluded that solving a structure from powder data remains a challenge, at least one order of magnitude more difficult than solving a problem with similar complexity from single-crystal data. Nevertheless, a few more steps in the direction of increasing the SDPD rate of success were accomplished since the two previous round robins: this time, not only the computer program developers were successful but also some users. No result was obtained from crystal structure prediction expert
Systemic delivery of a specific antibody targeting the pathological N-terminal truncated tau peptide reduces retinal degeneration in a mouse model of Alzheimer’s Disease
Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer’s Disease (AD). Amyloid-β (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications—such as truncation with generation of toxic fragments—nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20–22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aβ processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings
Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease
Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing
- …