14,732 research outputs found

    A Probabilistic Analysis of Kademlia Networks

    Full text link
    Kademlia is currently the most widely used searching algorithm in P2P (peer-to-peer) networks. This work studies an essential question about Kademlia from a mathematical perspective: how long does it take to locate a node in the network? To answer it, we introduce a random graph K and study how many steps are needed to locate a given vertex in K using Kademlia's algorithm, which we call the routing time. Two slightly different versions of K are studied. In the first one, vertices of K are labelled with fixed IDs. In the second one, vertices are assumed to have randomly selected IDs. In both cases, we show that the routing time is about c*log(n), where n is the number of nodes in the network and c is an explicitly described constant.Comment: ISAAC 201

    Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

    Get PDF
    Single- and multilayer graphene and highly ordered pyrolytic graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like valence-band structure, which suggests double-sided hydrogenation. With the scanning tunneling microscopy technique, various atomic-scale charge-density patterns were observed, which may be associated with different C-H conformers. Hydrogen-LTP-exposed graphene on SiO₂ has a Raman spectrum in which the D peak to G peak ratio is over 4, associated with hydrogenation on both sides. A very low defect density was observed in the scanning probe microscopy measurements, which enables a reverse transformation to graphene. Hydrogen-LTP-exposed HOPG possesses a high thermal stability, and therefore, this transformation requires annealing at over 1000 °C

    Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations

    Full text link
    We study magneto-elastic oscillations of highly magnetized neutron stars (magnetars) which have been proposed as an explanation for the quasi-periodic oscillations (QPOs) appearing in the decaying tail of the giant flares of soft gamma-ray repeaters (SGRs). We extend previous studies by investigating various magnetic field configurations, computing the Alfv\'en spectrum in each case and performing magneto-elastic simulations for a selected number of models. By identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR 1806-20) with the fundamental Alfv\'en QPOs, we estimate the required surface magnetic field strength. For the magnetic field configurations investigated (dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal component and a toroidal field confined to the region of field lines closing inside the star, and for poloidal fields with an additional quadrupole-like component) the estimated dipole spin-down magnetic fields are between 8x10^14 G and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources producing giant flares. A number of these models exhibit a rich Alfv\'en continuum revealing new turning points which can produce QPOs. This allows one to explain most of the observed QPO frequencies as associated with magneto-elastic QPOs. In particular, we construct a possible configuration with two turning points in the spectrum which can explain all observed QPOs of SGR 1900+14. Finally, we find that magnetic field configurations which are entirely confined in the crust (if the core is assumed to be a type I superconductor) are not favoured, due to difficulties in explaining the lowest observed QPO frequencies (f<30 Hz).Comment: 21 pages, 16 figures, 6 tables, matched to version accepted by MNRAS with extended comparison/discussion to previous wor

    The Closest Look at 1H0707-495: X-ray Reverberation Lags with 1.3 Ms of Data

    Get PDF
    Reverberation lags in AGN were first discovered in the NLS1 galaxy, 1H0707-495. We present a follow-up analysis using 1.3 Ms of data, which allows for the closest ever look at the reverberation signature of this remarkable source. We confirm previous findings of a hard lag of ~100 seconds at frequencies v ~ [0.5 - 4] e-4 Hz, and a soft lag of ~30 seconds at higher frequencies, v ~ [0.6 - 3] e-3 Hz. These two frequency domains clearly show different energy dependences in their lag spectra. We also find evidence for a signature from the broad Fe K line in the high frequency lag spectrum. We use Monte Carlo simulations to show how the lag and coherence measurements respond to the addition of Poisson noise and to dilution by other components. With our better understanding of these effects on the lag, we show that the lag-energy spectra can be modelled with a scenario in which low frequency hard lags are produced by a compact corona responding to accretion rate fluctuations propagating through an optically thick accretion disc, and the high frequency soft lags are produced by short light-travel delay associated with reflection of coronal power-law photons off the disc.Comment: 11 pages, 10 figures. Accepted for publication in MNRA

    Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra

    Full text link
    Observations of thermonuclear X-ray bursts from accreting neutron stars (NSs) in low-mass X-ray binary systems can be used to constrain NS masses and radii. Most previous work of this type has set these constraints using Planck function fits as a proxy: both the models and the data are fit with diluted blackbody functions to yield normalizations and temperatures which are then compared against each other. Here, for the first time, we fit atmosphere models of X-ray bursting NSs directly to the observed spectra. We present a hierarchical Bayesian fitting framework that uses state-of-the-art X-ray bursting NS atmosphere models with realistic opacities and relativistic exact Compton scattering kernels as a model for the surface emission. We test our approach against synthetic data, and find that for data that are well-described by our model we can obtain robust radius, mass, distance, and composition measurements. We then apply our technique to Rossi X-ray Timing Explorer observations of five hard-state X-ray bursts from 4U 1702-429. Our joint fit to all five bursts shows that the theoretical atmosphere models describe the data well but there are still some unmodeled features in the spectrum corresponding to a relative error of 1-5% of the energy flux. After marginalizing over this intrinsic scatter, we find that at 68% credibility the circumferential radius of the NS in 4U 1702-429 is R = 12.4+-0.4 km, the gravitational mass is M=1.9+-0.3 Msun, the distance is 5.1 < D/kpc < 6.2, and the hydrogen mass fraction is X < 0.09.Comment: 15 pages, 11 figures, submitted to A&

    FARS2 mutations presenting with pure spastic paraplegia and lesions of the dentate nuclei.

    Get PDF
    Mutations in FARS2, the gene encoding the mitochondrial phenylalanine-tRNA synthetase (mtPheRS), have been linked to a range of phenotypes including epileptic encephalopathy, developmental delay, and motor dysfunction. We report a 9-year-old boy with novel compound heterozygous variants of FARS2, presenting with a pure spastic paraplegia syndrome associated with bilateral signal abnormalities in the dentate nuclei. Exome sequencing identified a paternal nonsense variant (Q216X) lacking the catalytic core and anticodon-binding regions, and a maternal missense variant (P136H) possessing partial enzymatic activity. This case confirms and expands the phenotype related to FARS2 mutations with regards to clinical presentation and neuroimaging findings

    The Federal Trade Commission and Pyramid Sales Schemes

    Get PDF

    Device-spectroscopy of magnetic field effects in a polyfluorene organic light-emitting diode

    Full text link
    We perform charge-induced absorption and electroluminescence spectroscopy in a polyfluorene organic magnetoresistive device. Our experiments allow us to measure the singlet exciton, triplet exciton and polaron densities in a live device under an applied magnetic field, and to distinguish between three different models that were proposed to explain organic magnetoresistance. These models are based on different spin-dependent interactions, namely exciton formation, triplet exciton-polaron quenching and bipolaron formation. We show that the singlet exciton, triplet exciton and polaron densities and conductivity all increase with increasing magnetic field. Our data are inconsistent with the exciton formation and triplet-exciton polaron quenching models.Comment: 4 pages, two figure

    A Parallax Distance to the Microquasar GRS 1915+105 and a Revised Estimate of its Black Hole Mass

    Full text link
    Using the Very Long Baseline Array, we have measured a trigonometric parallax for the micro quasar GRS 1915+105, which contains a black hole and a K-giant companion. This yields a direct distance estimate of 8.6 (+2.0,-1.6) kpc and a revised estimate for the mass of the black hole of 12.4 (+2.0,-1.8) Msun. GRS 1915+105 is at about the same distance as some HII regions and water masers associated with high-mass star formation in the Sagittarius spiral arm of the Galaxy. The absolute proper motion of GRS 1915+105 is -3.19 +/- 0.03 mas/y and -6.24 +/- 0.05 mas/y toward the east and north, respectively, which corresponds to a modest peculiar speed of 22 +/-24 km/s at the parallax distance, suggesting that the binary did not receive a large velocity kick when the black hole formed. On one observational epoch, GRS 1915+105 displayed superluminal motion along the direction of its approaching jet. Considering previous observations of jet motions, the jet in GRS 1915+105 can be modeled with a jet inclination to the line of sight of 60 +/- 5 deg and a variable flow speed between 0.65c and 0.81c, which possibly indicates deceleration of the jet at distances from the black hole >2000 AU. Finally, using our measurements of distance and estimates of black hole mass and inclination, we provisionally confirm our earlier result that the black hole is spinning very rapidly.Comment: 20 pages; 2 tables; 6 figure
    • …
    corecore