642 research outputs found

    Technical note: Preparation improvement of charred cadaveric viscera using sandison’s rehydrating solution for histological analysis

    Get PDF
    In forensic evaluation of charred corpses, internal detrimental signs may result as more significant of those observed during external examination and is often arduous to state if a victim was exposed to fire before or after death. When the histological analysis of the remaining internal viscera is necessary, the massive destruction caused by the lesion, the charring and the coarctation of the samples don't allow to give further information or to determine the remaining organic components of the viscera. This limit is determined by the intrinsic characteristics of this thermal lesivity of self-maintenance even after the exitus of the subject, worsening the initial detrimental framework. The Authors, with the purpose of improving the microscopic visualization of the samples collected from cadavers with peculiar deterioration, as in case of carbonization, suggest the use of a specific technical protocol based on the use of Sandison's rehydrating solution since the samples treated with this solution showed, at microscopic examination, a substantial histological-morphological improvement

    Physical-chemical characterization of a galvanic sludge and its inertization by vitrification using container glass

    Get PDF
    Several industrial processes produce large amounts of heavy metals-rich wastes, which could be considered as "trash-can raw materials". The incorporation in ceramic systems can be regarded as a key process to permanently incorporate hazardous heavy metals in stable matrixes. In particular the aim of this work is to prepare and evaluate environmental risk assessment of coloured glass and glass-ceramic with the addition of chromium(III) galvanic sludge having a high content of Cr2O3 (15.91 wt%). Trivalent chromium compounds generally have low toxicity while hexavalent chromium is recognized by the International Agency for Research on Cancer and by the US Toxicology Program as a pulmonary carcinogen. The sludge has been characterized by ICP -AES chemical analysis, powder XRD diffraction, DTA, SEM, leaching test after different thermal treatments ranging from 400°C to 1200°C. Batch compositions were prepared by mixing this sludge with glass containers. The glass container composition is rich in SiO2 (69.89 wt%), Na 2O (12.32 wt%) and CaO (11.03 wt%), while the sludge has a high amount of CaO (42.90 wt%) and Cr2O3 (15.91 wt%). The vitrification was carried out at 1450°C in an electrical melting furnace for 2 h followed by quenching in water or on graphite mould. Chromium incorporation mechanisms, vitrification processability, effect of initial Cr oxidation state, and product performance were investigated. In particular toxic characterization by leaching procedure and chemical durability studies of the glasses and glass-ceramics were used to evaluate the leaching of heavy metals (in particular of Cr). The results indicate that all the glasses obtained were inert and the heavy metals were immobilized

    Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro

    Get PDF
    Aims: Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of HSC. / Results: Primary human HSC were exposed to 15-E2-IsoLG for up to 48 hours. Exposure to 5 μM 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500 nM) 15-E2-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response. / Innovation: This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis. / Conclusions: IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy

    Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension

    Get PDF
    BACKGROUND AND AIMS: Hepatic stellate cells (HSCs) are vital to hepatocellular function and the liver response to injury. They share a phenotypic homology with astrocytes that are central in the pathogenesis of hepatic encephalopathy, a condition in which hyperammonemia plays a pathogenic role. This study tested the hypothesis that ammonia modulates human HSC activation in vitro and in vivo, and evaluated whether ammonia lowering, by using l-ornithine phenylacetate (OP), modifies HSC activation in vivo and reduces portal pressure in a bile duct ligation (BDL) model. METHODS: Primary human HSCs were isolated and cultured. Proliferation (BrdU), metabolic activity (MTS), morphology (transmission electron, light and immunofluorescence microscopy), HSC activation markers, ability to contract, changes in oxidative status (ROS) and endoplasmic reticulum (ER) were evaluated to identify effects of ammonia challenge (50 μM, 100 μM, 300 μM) over 24–72 h. Changes in plasma ammonia levels, markers of HSC activation, portal pressure and hepatic eNOS activity were quantified in hyperammonemic BDL animals, and after OP treatment. RESULTS: Pathophysiological ammonia concentrations caused significant and reversible changes in cell proliferation, metabolic activity and activation markers of hHSC in vitro. Ammonia also induced significant alterations in cellular morphology, characterised by cytoplasmic vacuolisation, ER enlargement, ROS production, hHSC contraction and changes in pro-inflammatory gene expression together with HSC-related activation markers such as α-SMA, myosin IIa, IIb, and PDGF-Rβ. Treatment with OP significantly reduced plasma ammonia (BDL 199.1 μmol/L ± 43.65 vs. BDL + OP 149.27 μmol/L ± 51.1, p <0.05) and portal pressure (BDL 14 ± 0.6 vs. BDL + OP 11 ± 0.3 mmHg, p <0.01), which was associated with increased eNOS activity and abrogation of HSC activation markers. CONCLUSIONS: The results show for the first time that ammonia produces deleterious morphological and functional effects on HSCs in vitro. Targeting ammonia with the ammonia lowering drug OP reduces portal pressure and deactivates hHSC in vivo, highlighting the opportunity for evaluating ammonia lowering as a potential therapy in cirrhotic patients with portal hypertension

    On the Refractive Index of Ageing Dispersions of Laponite

    Full text link
    Aqueous dispersion of Laponite at low ionic concentration is of interest since it undergoes structural evolution with respect to time, which is usually termed as ageing. In this work we study the refractive index behavior as a function of ageing time, concentration and temperature. We observed that the extended Lorenz-Lorentz equation fitted the refractive index dependence on concentration and temperature very well. The refractive index did not show any dependence on ageing time. However, the dependence of refractive index on concentration showed a marked change as the system underwent transition from an isotropic to a biphasic state. The slope of the refractive index-density data is remarkably close to that of water at all Laponite concentrations. In the context of transport phenomena, optical measurements such as interferometry can exploit the water-like behavior of Laponite dispersions.Comment: 13 pages, 3 figures, to appear in Applied Clay Scienc

    Recombinant Alkaline Phosphatase Prevents Acute on Chronic Liver Failure

    Get PDF
    The lipopolysaccharide (LPS)– toll-like receptor-4 (TLR4) pathway plays an important role in liver failure. Recombinant alkaline phosphatase (recAP) deactivates LPS. The aim of this study was to determine whether recAP prevents the progression of acute and acute-on-chronic liver failure (ACLF). Eight groups of rats were studied 4-weeks after sham surgery or bile duct ligation and were injected with saline or LPS to mimic ACLF. Acute liver failure was induced with Galactosamine-LPS and in both models animals were treated with recAP prior to LPS administration. In the ACLF model, the severity of liver dysfunction and brain edema was attenuated by recAP, associated with reduction in cytokines, chemokines, liver cell death, and brain water. The activity of LPS was reduced by recAP. The treatment was not effective in acute liver failure. Hepatic TLR4 expression was reduced by recAP in ACLF but not acute liver failure. Increased sensitivity to endotoxins in cirrhosis is associated with upregulation of hepatic TLR4, which explains susceptibility to development of ACLF whereas acute liver failure is likely due to direct hepatoxicity. RecAP prevents multiple organ injury by reducing receptor expression and is a potential novel treatment option for prevention of ACLF but not acute liver failure

    Structural Characterization of Natural and Processed Zircons with X-Rays and Nuclear Techniques

    Get PDF
    In ceramic industry, zircon sand is widely used in different applications because zirconia plays a role as common opacifying constituent. In particular, it is used as a basic component of glazes applied to ceramic tiles and sanitary ware as well as an opacifier in unglazed bulk porcelain stoneware. Natural zircon sands are the major source of zirconium minerals for industrial applications. In this paper, long, medium, and short range studies were conducted on zirconium minerals originated from Australia, South Africa, and United States of America using conventional and less conventional techniques (i.e., X-Ray Diffraction (XRD), Positron Annihilation Lifetime Spectroscopy (PALS), and Perturbed Angular Correlations (PAC)) in order to reveal the type and the extension of the regions that constitute the metamict state of zircon sands and themodifications therein produced as a consequence of the industrial milling process and the thermal treatment in the production line. Additionally, HPGe gamma-ray spectroscopy confirms the occurrence of significant levels of natural radioactivity responsible for metamictization in the investigated zircon samples. Results from XRD, PALS, and PAC analysis confirm that the metamict state of zircon is a dispersion of submicron disordered domains in a crystalline matrix of zircon.Facultad de Ciencias Exacta

    Structural Characterization of Natural and Processed Zircons with X-Rays and Nuclear Techniques

    Get PDF
    In ceramic industry, zircon sand is widely used in different applications because zirconia plays a role as common opacifying constituent. In particular, it is used as a basic component of glazes applied to ceramic tiles and sanitary ware as well as an opacifier in unglazed bulk porcelain stoneware. Natural zircon sands are the major source of zirconium minerals for industrial applications. In this paper, long, medium, and short range studies were conducted on zirconium minerals originated from Australia, South Africa, and United States of America using conventional and less conventional techniques (i.e., X-Ray Diffraction (XRD), Positron Annihilation Lifetime Spectroscopy (PALS), and Perturbed Angular Correlations (PAC)) in order to reveal the type and the extension of the regions that constitute the metamict state of zircon sands and themodifications therein produced as a consequence of the industrial milling process and the thermal treatment in the production line. Additionally, HPGe gamma-ray spectroscopy confirms the occurrence of significant levels of natural radioactivity responsible for metamictization in the investigated zircon samples. Results from XRD, PALS, and PAC analysis confirm that the metamict state of zircon is a dispersion of submicron disordered domains in a crystalline matrix of zircon.Facultad de Ciencias Exacta
    • …
    corecore