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ABSTRACT 

Aims. Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators 

of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype.  Isolevuglandins (IsoLG) are a 

family of acyclic -ketoaldehydes formed through oxidation of arachidonic acid or as by-products 

of the cyclooxygenase pathway.  IsoLGs are highly reactive aldehydes which are efficient at 
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forming protein adducts and cross-links at concentrations 100-fold lower than 4-

hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we 

synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of 

HSC.  Results.  Primary human HSC were exposed to 15-E2-IsoLG for up to 48 hours.  

Exposure to 5 M 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis.  At non-cytotoxic 

doses (50 pM-500 nM) 15-E2-IsoLG promoted HSC activation, indicated by increased 

expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased 

mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors 

of JNK and NF-kB.  In addition, IsoLG promoted formation of reactive oxygen species, and 

induced an early activation of ER stress, followed by autophagy.  Inhibition of autophagy 

partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a 

cytoprotective response.  Innovation. This study is the first to describe the biological effects of 

IsoLG in primary HSC, the main drivers of hepatic fibrosis.  Conclusions. IsoLGs represent a 

newly identified class of activators of HSC in vitro, which are biologically active at 

concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory 

response and autophagy. 
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INTRODUCTION  

Activation of hepatic stellate cells (HSC) to a myofibroblastic phenotype is a key event in 

the response of liver tissue to acute and chronic injury.  Activated HSC are programmed for the 
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synthesis, deposition and remodeling of collagens and other extracellular matrix (ECM) 

components in order to re-constitute the basal ECM necessary for tissue regeneration.  

However, the chronic activation of this process through persistence of parenchymal injury, 

causes the progressive accumulation of fibrillar ECM leading to liver cirrhosis [1-3].  An 

established trigger for HSC activation is oxidative stress, and, in particular, the products of lipid 

oxidation or oxidative modification of membrane polyunsaturated fatty acids.  This class of 

molecules includes the reactive lipid aldehydes malondialdehyde, 4-hydroxy-2-nonenal (4-

HNE), and F2 isoprostanes (such as 8-iso-PGF2α) [4, 5].  Importantly, exposure of HSC to 4-

HNE leads to increased synthesis and deposition of collagen I [6, 7], increased expression of 

matrix remodeling proteins, such as TIMP1 [7], activation of JNK signaling pathway [8], and 

increased pro-inflammatory signaling (MCP-1) [9].  Altogether these data suggest that products 

of lipid oxidation have a direct pro-inflammatory and pro-fibrogenic effect on HSC, the main 

cellular effectors of liver fibrogenesis.   

Despite the wealth of data supporting a role for 4-HNE as a key pro-fibrogenic stimulus, 

and thus potentially important in the pathogenesis of chronic liver disease, the role of other 

closely related bioactive molecules, such as IsoLGs, has not been addressed.  This class of 

molecules includes 8 regioisomers of acyclic -ketoaldehydes collectively referred to as 

isolevuglandins (IsoLGs, also called Isoketals or IsoK) [10, 11].  IsoLGs are formed either 

through free radical-mediated oxidation of arachidonic acid or during the formation of 

prostaglandins by cyclooxygenase.  Non-enzymatic rearrangement of the bicycloendoperoxide 

intermediates of these two pathways (PGH2 or its regioisomers, respectively) yield acyclic -

ketoaldehydes.  Whilst the free-radical mediated pathway generates a mixture of regio- and 

stereoisomers, the rearrangement of PGH2 yields a single stereoisomer of 15-E2-IsoLG and 15-

D2-IsoLG, designated as LGE2 and LGD2 respectively [12, 13].     
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Unlike 4-HNE, which mainly reacts with cysteine [14], IsoLGs are selectively reactive 

towards lysine residues, leading to the formation of stable lactam and hydroxylactam adducts 

[15].  The rate of adduction for IsoLGs is several folds higher than the one of 4-HNE, so that 

IsoLGs are considered some of the most reactive products of lipid peroxidation [16].  Of note, 

due to such rapidity of adduction, these compounds are virtually undetectable in free form in 

biological systems containing proteins [16].  In addition, IsoLGs induce protein crosslinks and 

oligomerization at concentrations at least 100-fold lower than those required for 4-HNE to 

promote the same degree of crosslinking [14, 17].  The formation of IsoLGs protein adducts may 

result in loss of function, formation of neo-antigens, and inhibition of proteasome function [18].  

IsoLGs have also been shown to form adducts with nucleic acids [19] and lipids, such as 

phosphatidyl-ethanolamine, resulting in the induction of endoplasmic reticulum stress, and 

mitochondrial dysfunction [20, 21].  Other cellular consequences of IsoLGs exposure include 

increased expression of pro-inflammatory cytokines and adhesion molecules [20], and cell 

death [18, 22].   

In vivo, IsoLGs are formed during inflammation, either through increased formation of 

prostaglandins and re-arrangement of the PGH2 intermediate formed by cyclooxygenase [23], or 

during oxidative stress [24, 25].  Consistent with this observation, circulating and tissue levels of 

IsoLGs adducts are increased in multiple disease conditions associated with both, including 

end-stage renal disease and atherosclerosis [26], hypertension [27], pulmonary fibrosis [22].  

For this reason, IsoLGs have been proposed as both markers and mediators of oxidative 

damage.   

With respect to their potential role in liver disease, IsoLGs adducts have been described 

in livers of rodents exposed acutely to carbon tetrachloride [16], and chronically to ethanol [28, 

29], or high fat diet [30].  However, IsoLGs’s effects on specific hepatic cell types and their 

potential contribution to disease pathogenesis have not been investigated.  In this work we 
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sought to characterize the biological effects of a synthetic form of the model IsoLGs 15-E2-

levuglandin (15-E2-IsoLG) on human HSC. 

 

MATERIALS AND METHODS 

Sources of reagents.  15-E2-levuglandin (15-E2-IsoLG) was synthesized as previously 

described and supplied in DMSO (10 mM) [31]. In brief, 100 µl of a 10 mM solution of the stable 

precursor 8-Acetyl-9-dimethoxymethyl-12-hydroxyheptadeca-5(Z),10(E)-dienoic acid in 

dichloromethane was incubated with Montmorillonite K-10 (10 mg) under slight agitation for 15 

minutes at room temperature in an Eppendorf tube.  After 15 minutes the clay was separated by 

centrifugation (16000g), and the supernatant collected, the residual clay was rinsed with 2 

x500µL of dichlormethane, re-centrifuged, and the supernatant added to the initial supernatant.  

Lastly, 200 µL of DMSO was added, and the dichloromethane removed under a stream of 

nitrogen to yield a 3-4 mM solution of 15-E2-IsoLG, as measured via spectrophotometry at 580 

nm (Omega FLUOstar microplate reader (BMG Labtech, Ortenberg, Germany).  Each batch of 

15-E2-IsoLG was prepared in an identical manner, yielded similar biological effects between 

experiments, and was stored up to 8 weeks at -80C.  For each batch, functional read-outs, 

such as metabolic activity and proliferation were tested in different human hepatic stellate cells 

preparations and showed no variation. As this reagent is not available commercially, it will be 

provided upon request (Dr S. Davies, Vanderbilt University, US).  For experiments involving 

chemical inhibitors, hHSC were pre-incubated for one hour with inhibitors of pan JNK 

(SP600125, 20 M), p38 MAPK (SB203580, 10 M), and NF-kB (Pyrrolidinedithiocarbamate, 

PDTC, 50 M) (TOCRIS Biosciences, Bristol, UK).  For autophagy induction/inhibition 

chloroquine and bafilomycin were used at 15 M and 10 nM concentrations, respectively.  

Unless otherwise specified, all other reagents were from Sigma (Dorset, England). 
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Human hepatic stellate cells (hHSC) isolation and culture.  Cells were isolated from 

resected livers wedges, obtained from patients undergoing surgery at the Royal Free Hospital 

after giving informed consent (EC01.14-RF).  Cells were isolated according to a published 

protocol [32], with modifications for human liver [2].  In brief, 10 grams of total human liver tissue 

were digested with 0.01% Collagenase, 0.05% Pronase, and 0.001% DNase I without perfusion.  

The homogenate was filtered through a 100 µm cell strainer (BD Falcon,Oxford, UK), and the 

flow-through was centrifuged at 50xg for 2 minutes at 4°C.  After washing the supernatant, 

gradient centrifugation was performed at 1400xg for 17 minutes at 4°C using an 11.5% Optiprep 

gradient (Sigma).  Finally, the interface was collected and washed.  Purity of the obtained hHSC 

was confirmed by detection of CD140b (PDGFRbeta), CD29 (Integrin beta 1) and Cytoglobin B 

(CYGB).  The obtained HSC were cultured in Iscove’s Modified DMEM (IMDM), supplemented 

with 20% foetal bovine serum (FBS), 2 mM Glutamine, 1X nonessential amino acids, 1.0 mM 

sodium pyruvate, 1X antibiotic-antimycotic (all from Life Technologies, Paisley, UK), referred to 

as complete HSC medium hereinafter.  Each HSC preparation was maintained under standard 

conditions in a humidified incubator under 5% CO2 in air at 37°C.  Experiments described in this 

study were performed on hHSC of at least three independent cell preparations, used between 

passage 3 and 8 [8, 33]. 

15-E2-IsoLG in vitro treatments.  For all the described experiments, HSC cultures were 

cultured in serum-free (SFM) medium for 24 h before the experimental treatment.  The day of 

the treatment, cells were first exposed to 15-E2-IsoLG diluted in HBSS containing Ca2+ / Mg2+ for 

15’, followed by incubation of 15-E2-IsoLG diluted in SFM for the remaining duration of the 

experiment.  The pre-incubation in amino acids-free media (HBSS) was aimed at minimizing the 

possibility of 15-E2-IsoLG adduction to culture media components [18, 34].  The maximum 

duration of the pre-incubation period was established in preliminary experiments, which 

demonstrated that HBSS was well tolerated, and did not elicit substantial metabolic effects in 

primary HSC. 
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The highest concentration of DMSO (15-E2-IsoLG vehicle) in the diluted 15-E2-IsoLG (at 

the 5 M dose) was  0.05%.  For all the other doses, which were prepared by serial dilution, 

the DMSO concentration was always  0.01%, the effect of which was considered negligible.  

Therefore, control samples, all pre-treated with HBSS, have been labeled as SFM only.  The 

volumes/well used for cell treatments were respectively: 3 ml (6-wells plates), 1 ml (24-wells 

plates), 0.5 ml (multiwell chamber slides), and 200 l (96-wells plates).  

Dose-response studies.  hHSC were seeded at a density of 6-6.5 x104 cells/ml in 96-

well plates and treated, in quadruplicates, with 15-E2-IsoLG serially diluted, so that in all 

resulting treatments the concentrations of DMSO were always  0.05%.  The wide range of 15-

E2-IsoLG concentrations tested (5 µM-5 pM), was chosen as it encompasses the concentrations 

at which 4-HNE or 8-epi-PGF2α maximally activate HSCs, according to existing literature [4, 6, 

7].  24-48 hours after treatment, viability/cytotoxicity were measured via MTS assay (Promega, 

Madison, WI), Neutral red assay [35], and lactate dehydrogenase (LDH) quantification in culture 

supernatants (Thermoscientific, Pierce, Loughborough, UK).  In parallel experiments, the effect 

of 15-E2-IsoLG on DNA synthesis was measured via colorimetric BrdU ELISA (Roche, UK).  For 

the subsequent experiments, 15-E2-IsoLG was used at concentrations of 0.5 M-5 nM. 

RNA extraction and qRT-PCR.  Total RNA was extracted from 6-wells cultures treated 

with 15-E2-IsoLG for 24 hours via TRIzol reagent, and RNeasy Universal Mini Kit 

(Qiagen,Manchester, UK).  One microgram of total RNA was reverse transcribed with random 

primers and MultiScribe RT enzyme (Applied Biosystems, Paisley,UK).  Taqman® gene 

expression assays were used to measure via qRT-PCR the levels of the transcripts for markers 

of fibrogenic activation, selected chemokines/cytokines, and adhesion molecules (Table 1). 

Signal was acquired with Applied Biosystems 7500 Fast Real-Time PCR System (ThermoFisher 

Scientific, Paisley, UK), and data were analyzed using the delta delta Ct method [36].  Levels of 

transcripts of interest were normalized to the ones of GAPDH as reference gene.  
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HEK-Blue™ IL-18/IL-1β assays.  Production of bioactive IL-1β/IL-18 was assessed via 

using HEK-Blue™ IL-18/IL-1β reporter cells, which carry the secreted embryonic alkaline 

phosphatase (SEAP) gene as reporter (InVivoGen, Toulouse, France).  In brief, reporter cells 

were incubated for 24-48 hours with conditioned media from HSCs treated with 15-E2-IsoLG for 

48 hrs.  24-48 hours later, alkaline phosphatase activity was measured via Quanti-Blue reagent 

(InVivoGen, Toulouse, France).  Absorbance at 620-655 nm was read in the Omega FLUOstar 

microplate reader (BMG Labtech, Ortenberg, Germany). 

Western Blot. Cells lysates from 6-wells cultures treated with 15-E2-IsoLG for 24-48 

hours were prepared in radioimmunoprecipitation (RIPA) buffer containing 20 mM Tris/HCl, pH 

7.4, 150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40, 1 mM Na3VO4, 1 mM PMSF, 1:100 protease 

inhibitor cocktail (Sigma).  Cell debris were pelleted by centrifugation at 10,000 rpm at 4 °C for 

15 minutes and total proteins were measured via bicinconinic (BCA) assay (Pierce, Rockford, 

IL,USA) and stored at -80 °C for further analysis.  20-25 g of protein extracts were separated 

by SDS-PAGE with 8-12% acrylamide gel and transferred to a PVDF membrane (Millipore, 

Bedford, USA).  After blocking for 1 h with 3% bovine serum albumin (BSA), membranes were 

incubated overnight 4 °C under mild agitation with primary antibody solutions (1% BSA, TBS 1X 

and 0.1%Tween 20).  Membranes were then washed with TBS 1X/0.1% Tween 20, followed by 

incubation with the appropriate secondary HRP-conjugated antibody.  Protein immunoreactivity 

was revealed with the ECL system (Thermoscientific, Pierce), using a FluorChem M (Protein 

Simple, San Jose, USA).  To demonstrate equal loading of protein samples, membranes were 

stripped with stripping buffer and were re-probed with tubulin antibody.  The complete list of 

antibodies used is provided in Table 2.  

Measurement of intracellular reactive oxygen and nitrogen species formation.  

HSC (20000/well) were grown to sub-confluency on multi-well chamber slides (Millipore, 

Watford, UK), serum starved for 24 hours, then treated with 0.5 M/50 nM of 15-E2-IsoLG for 
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one hour.  Formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as 

a general indicator of oxidative stress, was measured by incubation with the 5-(and-6)-carboxy-

2’,7’- dichlorodihydrofluorescein diacetate (Carboxy-H2 DCFDA) fluorescent probe 

(ThermoFisher Scientific, Paisley, UK).  Total cell distribution was revealed by staining nuclei 

with the Hoechst 33342 dye (final concentration of 1μM).  Images were acquired via 

fluorescence microscope (AxioScopeA1, Carl Zeiss Ltd).  

Transmission Electron Microscopy.  hHSC were grown on glass coverslips and 

treated with 15-E2-IsoLG for 24-48 hours as previously described.  After treatment, cells were 

fixed in 1.5% glutaraldehyde, 2% paraformaldehyde in 0.1 M cacodylate buffer (pH7.4) for 24 

hours at 4C.  After two washes in cacodylate buffer, the cells were post-fixed in 1% osmium 

tetraoxide /1.5% potassium ferrocyanide in 0.1 M cacodylate buffer at 4C for 45 minutes.  After 

an additional wash in cacodylate buffer, and a rinse in dH20, the cover slips were dehydrated in 

a graded ethanol-water series, and infiltrated with Agar 100 resin for 24 hours.  The cover slip 

was then removed using hydrofluoric acid.   A representative area was selected and ultra thin 

sections were cut at 70-80 nm, using a diamond knife on a Reichert ultracut S microtome.  

Sections were collected on 200 mesh copper grids, stained with lead citrate, and viewed with a 

Joel 1010 transition electron microscope.  Images were recorded using a Gatan Orius CCD 

camera (Gatan, UK). 

Immunofluorescence.  hHSC (20000/well) grown on multi-well chamber slides 

(Millipore, Watford, UK) were treated with 15-E2-IsoLG for 24 hours.  After methanol fixation, 

rinsing and blocking steps, slides were incubated with monoclonal anti-mouse LC3B antibody, 

followed by AlexaFluor 488-conjugated secondary antibody (ThermoFisher Scientific, Paisley, 

UK).  Slides were mounted with the DAPI-containing mounting medium Vectashield (Vector, 

Peterborough, UK) and imaged with fluorescence microscope (AxioScopeA1, Carl Zeiss Ltd).  

Negative controls included were obtained by omitting the primary or the secondary antibody 
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from the protocol.  For PDI immunofluorescence a similar protocol was followed, except for the 

use of 4% paraformaldehyde as fixative and of an Alexa Fluor 488 conjugated PDI antibody 

(Cell Signaling). 

Data analyses. All analyses were performed in at least 3 different HSC preparations.  

Data were analyzed with Prism software (Graph Pad, CA, USA) using either one-way or two-

ways ordinary ANOVA, with either Dunnett’s or Bonferroni’s multiple comparisons tests. 

 

 

RESULTS 

Determination of the range of bioactive concentrations of IsoLG in HSC.  The first 

goal was to determine if IsoLGs promote similar phenotypic effects in terms of cytotoxicity and 

proliferation on HSC activation to those described for 4-HNE and isoprostanes, and at 

comparable doses.  HSC treated with complete medium (CM) were used as positive controls, 

since serum supplementation increases proliferation and metabolic activity (Fig 1C-H).  After 24 

hours, exposure to 5 M 15-E2-IsoLG resulted in profound cytotoxicity, as indicated by 

increased LDH leakage in cell culture media (Fig.1A), and reduced retention of Neutral Red 

staining (Fig 1E) (38).  Despite the profound cytotoxicity observed, at 24 hours, formazan 

reduction (MTS), an indicator of mitochondrial function was not significantly reduced (Fig 1C), 

which could indicate a compensatory response.  After 48 hours, the severity of these changes 

was even higher, with significantly increased LDH leakage in cell culture media (1B), and 

significantly reduced MTS and Neutral Red staining compared to control cells (1B, D, F).  In 

contrast, at doses from 1 µM-5 nM of 15-E2-IsoLG no significant metabolic or toxic effects were 

observed, at either of the time-points considered (1A-F).  Further, since reactive lipid aldehydes 

have a mixed effect on cellular proliferation, we assessed the effects of 15-E2-IsoLG exposure 

on DNA synthesis by measurement of BrdU incorporation.  Consistent with the severe toxicity 
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and cell loss observed in the highest dose of 15-E2-IsoLG used, BrdU incorporation was 

significantly reduced at both at 24 and 48 hours (1G, H).  At all the other doses considered, 

IsoLG exposure did not increase BrdU incorporation, suggesting a lack of effect on HSC 

proliferation, both at 24 and 48 hrs (1G, H).  Collectively, these data suggest that, over the 

broad range of concentrations tested, 15-E2-IsoLG was profoundly cytotoxic at 5 M dose, but, 

at lower doses, did not promote hHSC proliferation. 

High doses of IsoLG promote apoptotic cell death in HSC.  To determine the 

mechanism of high dose IsoLG induced cytotoxicity we exposed hHSC to 5 M 15-E2-IsoLG for 

up to 24 hours.  Morphologically, cytotoxicity was evident already after 4 hours (data not 

shown).  Western blot analyses confirmed that the observed cytotoxicity was due to induction of 

apoptotic cell death, as demonstrated by time-dependent activation of the classical markers of 

apoptosis cleaved PARP, as well as the phosphorylation and activation of the pro-apoptotic 

signaling pathway JNK (Fig. 2).  Since IsoLG cytotoxicity has been associated with adducts 

formation, inhibition of proteasome function and activation of the UPR response, we measured 

the ER stress dependent pro-apoptotic transcription factor CHOP/GADD153 [18, 20].  Indeed, 

IsoLG exposure promoted a robust up-regulation of the pro-apoptotic transcription factor 

GADD153/CHOP, which preceded even the increases of other markers of cell death. 

Effects of non-cytotoxic doses of IsoLG on activation of signaling pathways and 

markers of HSC activation.  Despite the apparent lack of metabolic or pro-proliferative effects 

at the lower doses of 15-E2-IsoLG studied, we sought to determine the extent of phenotypic 

changes in HSC, with focus on multiple features of HSC activation.  For these experiments, 

hHSC were treated with a range of non-cytotoxic doses (500 nM- 0.5 nM) of 15-E2-IsoLG for 24 

hours.  As the main fibrogenic effect of reactive lipid aldehydes is via increased collagen 1 

mRNA production [6], we sought to assess the effects of IsoLG exposure on key genes in 

collagen synthesis and maturation, as well as other matrix remodeling enzymes, such as tissue 
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inhibitor of metalloprotease 1 and lysyl oxidase (Fig. 3).  15-E2-IsoLG exposure was not 

associated with any increase in COL1A1 mRNA levels, whilst, at the highest dose used, it 

actually led to a significant decrease.  Similarly, 15-E2-IsoLG exposure had no effect across all 

concentrations tested in the modulation of TIMP-1 and LOX (Fig.3).   

Next we sought to determine the effects of IsoLG on some signaling pathways critical to 

HSC biology, which are known to be modulated by exposure to reactive lipid aldehydes, such as 

4-HNE, namely mitogen activated protein kinases (MAPKs), including p38 MAPK, extracellular 

signal-regulated kinases 1 and 2 (ERK1/2), and c-Jun NH2-terminal kinase (JNK) [7, 8].  

Exposure to IsoLG promoted a robust activation of extracellular related kinase 1/2 (ERK) 

particularly at the two highest concentrations used.  Likewise, we observed a strong 

upregulation of JNK phosphorylation at the same concentrations.  In contrast, at 24 hours we 

detected no significant activation of p38 MAPK.  In addition, we demonstrate that IsoLG 

exposure caused increased expression of alpha smooth muscle actin, a classical marker of 

myofibroblastic activation.   

Exposure to IsoLG promotes increased cytokines/chemokines production, and 

intracellular ROS production in HSC.  In other cell types, IsoLGs exposure promotes a pro-

inflammatory phenotype, via upregulation of adhesion molecules, chemokines/cytokines, and 

transcription factors [20, 27, 30].  Therefore, we investigated if incubation of HSCs with IsoLGs 

had similar effects by measuring mRNA levels of multiple pro-inflammatory mediators [37].  

Indeed, IsoLGs treated HSCs exhibited significantly increased levels of the adhesion molecule 

ICAM-1 at the 50 nM dose.  In addition, IsoLG exposure resulted in significantly elevated levels 

of IL-6, as well as of the chemokine MCP1/CCL2 across all the range of concentrations tested.  

In the case of IL-8, exposure to 500 nM and 50 nM IsoLG resulted in a 15-fold and 5-fold 

increase in mRNA levels, respectively, compared to control cells.  Likewise, IL-1 levels were 

approximately 8-fold higher at the highest dose examined.  These changes in RNA levels led to 

a significant increase of secreted and bioactive IL-1, as measured via a reporter assay (Figure 
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4F).  To determine which signaling pathways are responsible for such robust increases in pro-

inflammatory cytokine production, in a subset of experiments, HSC were pre-incubated for one 

hour with chemical inhibitors of JNK, p38 MAPK, and NF-kB, prior to treatment with IsoLGs’s for 

24 hours as previously described.  As before, cells treated with IsoLGs displayed a robust 

increase in IL-1 levels over vehicle treated cells, which was completely abrogated by treatment 

with JNK inhibitor, but not by p38 MAPK.  Despite a lack of detectable activation of NF-kB 

signaling via western Blot (data not shown), treatment of cells with the NF-kB inhibitor PDTC 

also partially prevented the increase in IL-1 levels.  Overall, inhibition of JNK was the most 

effective at reducing overexpression of pro-inflammatory cytokines, whereas p38 MAPK was the 

least effective (Fig 4).  Collectively, these results indicate that in human HSC IsoLGs trigger pro-

inflammatory effects, by stimulating cytokine and chemokine production and secretion, which is 

largely dependent upon JNK activation. 

 It has been proposed that activation of JNK kinases following reactive lipid aldehydes 

exposure (4-HNE) could be mediated by redox changes, in particular from increased ROS 

formation [38].  Indeed exposure to 4-HNE results in increased ROS production in a number of 

cell types [38-40].  Further, IsoLGs are known to cause mitochondrial dysfunction in isolated 

mitochondria, another potential source of ROS [21].  Therefore we sought to determine if 15-E2-

IsoLG may also promote increased ROS formation in HSC, using the fluorescent probe DCFDA.  

For these experiments we focused on the early changes (1 hour), as previously demonstrated 

[39].  After one hour of incubation with 15-E2-IsoLG, there was a dose dependent increase of 

fluorescence at the two doses tested, compared to SFM treated cells, suggesting increased 

production of intracellular ROS (Figure 4).  

Exposure to IsoLG promotes increased autophagy in HSC. Our results so far 

indicate that IsoLG exposure in HSC induces stress signaling, pro-inflammatory changes, and 

redox changes.  Mechanistically, in other cell types, IsoLG act primarily by forming adducts to 
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protein, lipids or nucleic acids [41].  Notably, IsoLG-adducted proteins are poor substrates for 

proteosomal degradation and the proteasome itself can be functionally impaired following IsoLG 

exposure [18].  We then thought that some of the effects observed in HSC could be mediated by 

induction of autophagy, an alternative pathway to the ubiquitin-proteasome system to remove 

damaged proteins and organelles [42, 43].  To determine whether autophagy was present 

IsoLGs treated cells, we performed immunofluorescent staining for the autophagy marker LC3B, 

a protein involved in autophagosome formation[44].  While control cells displayed low 

abundance of LC3B puncta, HSCs treated with the autophagy inducer chloroquine (15 M) as 

positive control had abundant distribution of LC3B puncta throughout the cytoplasm (Fig 5B).  

15-E2-IsoLG treated cells had an intermediate abundance of autophagic vesicles.  Ongoing 

autophagy was further confirmed by LC3B detection via Western Blot analysis demonstrating 

increased conversion of LC3B in the autophagosome localized, phosphatidylethanolamine 

conjugated, LC3B II isoform (Fig 5C).  As an additional approach to confirm the presence of 

autophagy we conducted ultrastructural analyses in HSC treated with non-cytotoxic doses of 

IsoLGs for 24 and 48 hours.  Electron microscopy revealed increased presence of 

autophagosomes containing morphologically intact cytosol or organelles (Figure 5A) in 15-E2-

IsoLG treated cells, compared to control cells after 24 hours.  After 48 hours, such autophagic 

structures appeared even more mature, containing partially degraded cytoplasmic, as well as 

organelle material.  We then wondered whether the functional significance of autophagy 

induction in IsoLG treated cells could be a compensatory response to reduce proteotoxic stress.  

To test this hypothesis we simultaneously exposed cells to 15-E2-IsoLG and to the autophagy 

inhibitor bafilomycin at concentrations previously used in HSC [45].  Treatment of HSC with 10 

nM bafilomycin induced a robust increase of LC3BII levels, consistent with its reduced turnover 

resulting from a block of autophagosome fusion with lysosome, thus failure to complete 

autophagy [45, 46]   In addition, bafilomycin treatment in control cells increased levels of IL1 
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mRNA.  However, bafilomycin treatment in 15-E2-IsoLG-treated cells profoundly and dose-

dependently upregulated IL1 mRNA levels, suggesting the beneficial effect of autophagy in 

curbing proteotoxicity.  Collectively, these results demonstrate that IsoLG exposure in HSC 

results in induction of cellular autophagy. 

Exposure to IsoLG promotes early activation of ER stress, which precedes 

autophagy in HSC.  One of the triggers for autophagy is ER stress, and secondary activation of 

the unfolded protein response (UPR) [47, 48].  Indeed activation of the unfolded protein 

response has previously been described in HUVEC cells following exposure to IsoLG [20].  

Therefore we sought to determine whether the effects of IsoLG’s on autophagy were preceded 

by an increase in ER stress, and UPR activation.  Since ongoing ER stress is associated with 

ER enlargement and increased synthesis of protein folding machinery, we undertook time-

course analysis of the ER stress marker protein disulfide isomerase (PDI) at 2, 4, 8 and 24 

hours after IsoLG exposure (Figure 6) [49].  Fluorescence immunostaining for PDI revealed 

increased perinuclear staining of PDI at early time-points in IsoLG treated cells.  However, we 

observed that staining intensity decreased over time and decreased by 24 hours, indicating a 

reduction of ER stress at the later time-points.  To confirm the lack of activation of UPR at later 

time-points we measured specific RNA and protein indices of UPR activation, namely the 

chaperone Bip/Grp78, the transcription factors ATF-4 and XBP-1.  We detected no significant 

up-regulation of any of these markers, suggesting that ER stress activation following IsoLG 

exposure is an early event, which precedes activation of autophagy. 

 

 

DISCUSSION 

Oxidative stress is a key factor promoting chronic liver damage and fibrosis progression 

to cirrhosis.  Within this general background, the pro-fibrogenic features of IsoLGs are largely 

unknown although the formation of IsoLGs has been demonstrated by the detection of their 
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adducts in several animal models of liver disease [16, 28, 29, 50].  This paucity of information is 

largely consequent to the difficulty of precisely assessing the in vivo levels of IsoLG in 

physiological and pathological conditions, and to the fact that they do not exist in free form due 

to their extreme rapidity of adduction [16].  The aim of the present study was to achieve a better 

understanding of the potential IsoLG-related pro-fibrogenic mechanisms and how their formation 

may contribute to disease progression.   

A key issue in the development of the study design was the establishment of the 

experimental dose range to be employed, and to use concentrations that may be physiologically 

relevant (i.e. nanomolar concentrations).  Along these lines, quantification of circulating levels of 

IsoLGE2-protein adducts in patients with either atherosclerosis or renal disease had been 

reported in the range of 300 nM, i.e. roughly twice those observed in healthy individuals [51].  

On the other hand, the concentration of IsoLG-phosphatidylethanolamine (IsoLG-PE) adducts in 

whole livers of ethanol-fed mice was shown to be approximately 30 nM [28].  In addition, 

previous experimental evidence obtained in in vitro studies has suggested that IsoLG-PE may 

have a limited incorporation into the cells leading to the need of employing higher doses in order 

to elicit biological effects [20].  Based on these considerations, we decided to employ a range of 

concentrations (picomolar or nanomolar concentrations) which are likely to be reached in 

conditions of sustained oxidative stress in vivo.   

As a general result outcome it is rather clear that, when compared to a classic and well 

characterized reactive aldehyde such as 4-HNE, IsoLGs present some distinct features at least 

for what regards their biological effects on HSC, indeed, IsoLG are cytotoxic and pro-apoptotic 

at much lower concentration than 4-HNE (5 M versus > 25 M for 4-HNE) [7, 39].  These 

values are in line with what has recently been demonstrated in other cell types [22].  In addition, 

IsoLG are bioactive at lower concentrations (range: 50 nM-500 nM), compared with 1-10 M for 

4-HNE.  Similar to 4-HNE, IsoLG had limited or no effect on cell proliferation and DNA synthesis 
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[7].  In contrast to 4-HNE, IsoLG did not exert a direct pro-fibrogenic effect by inducing collagen 

synthesis [6, 7].  Despite the lack of a direct effect on collagen production by HSC and thus 

fibrogenesis, it is worth mentioning that IsoLG-modified proteins can become resistant to 

proteolysis [18].  Recent work has described how IsoLG exposure results in modifications of 

collagen 1α1, which render it resistant to matrix metalloproteinase 1 mediated degradation and 

prone to accumulation thus contributing indirectly to pulmonary fibrosis [22].   

Investigation on the intracellular signaling elicited by ROS and reactive aldehydes has 

proved to be of key importance in order to explain their biological effects [5].  In this regard, 

IsoLG treatment resulted in the activation of ERK and JNK signaling, and which was sustained 

at 24 hours post-treatment, but had no effect on either NF-kB or p38 MAPK activation.  While 4-

HNE typically induces JNK and p38 MAPK activation in HSCs [7, 8] and in other cell types [39, 

52] it does not have significant effects on either Ras/ERK [7] or NF-kB [8].  Considering the lack 

of IsoLG-mediated NF-kB activation in hHSC while there is evidence that 15-E2-IsoLG strongly 

activates NF-kB in macrophages, this confirms previous observations suggesting a strong cell-

type dependency in the response to this mediator [30]. Similarly, we did not detect any 

significant activation of p38 MAPK, a known target of ER stress activation [20, 47].  Overall, the 

most profound effect of hHSC exposure to IsoLG is an effect on the synthesis and secretion of 

pro-inflammatory cytokines/chemokines.  Such direct pro-inflammatory and activating effects 

have also been demonstrated in immune cells such as macrophages [30], and dendritic cells 

[27].  Whilst HSC are not traditionally considered as the main hepatic immune cell type, they 

contribute to tissue inflammation by providing chemotactic signals that regulate their interaction 

with inflammatory cell types, as well as HSC themselves [53, 54].  Therefore, in the context of 

oxidative stress during liver injury, IsoLGs formed will promote the pro-inflammatory role of HSC 

in causing chronic liver injury and inflammation.  

An additional important observation of the present study is the dose-dependent increase 

in intracellular ROS formation resulting from HSC exposure to IsoLG.  This could contribute to 
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the pro-fibrogenic role of HSC biology by multiple mechanisms. These include the activation of 

redox-dependent stress kinases such as JNK and ERK [55-57], and the stimulation of 

autophagy [47, 58, 59].  Along these lines, the results of this study provide evidence that IsoLG 

exposure in HSC activates autophagy.  This likely occurs as a compensatory anti-stress 

response, since inhibition of autophagy by bafilomycin increases the formation of pro-

inflammatory cytokines.  Indeed, autophagy can serve as a protective, pro-survival mechanism 

in cells exposed to oxidant stress, as reported in primary hepatocytes following 

ischemia/reperfusion [58], and HSC following H2O2 treatment [47].  Interestingly, it has been 

suggested that enhanced autophagy is required to establish an activated phenotype in HSC, by 

providing energy for the process via lipid droplets mobilization [45, 46].   

Induction of autophagy can be dependent on ER stress and UPR activation, particularly 

in the case of the IRE1/Xbp1 branch [47, 52, 60].  IsoLG activation appeared to trigger changes 

in PDI immunofluorescence and distribution between 2-4 hours after exposure, with little or no 

effect at later time-points, consistent with an earlier activation of ER stress.  Indeed, we did not 

detect any increases in protein or RNA markers of UPR activation at 24 hours, nor 

ultrastructural evidence of ER stress, such as ER enlargement and swelling and cytoplasmic 

vacuolization.  Collectively, this suggests that autophagy induction by IsoLG is preceded by 

UPR activation. 

The hypothesis that IsoLG exposure may activate autophagy to ameliorate proteotoxicity 

has recently been proposed in the context of pulmonary fibrosis.  In this view, IsoLG cytotoxicity 

could be the result of excessive accumulation of modified/adducted proteins [22].  Whilst this 

could also be the case for HSC, it must be noted that recent work has differentiated between the 

pathogenic role of IsoLG protein- and lipid-, particularly phosphatidylethanolamine, adducts [20, 

30, 34].  Our experimental setup, based on the direct treatment with 15-E2-IsoLG, which may 

generate both types of adducts, does not allow us to attribute the observed effects solely to 

protein adducts and further studies will be necessary for a more precise definition in this sense.  
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In conclusion, the data presented in this work provide the first evidence of the direct effects of 

chemically synthesized IsoLG on hHSC.  In particular, we demonstrate multiple effects of 

IsoLGs on HSC activation, and particularly increased MAPK activation (ERK/JNK), cytokines 

and chemokines production, intracellular ROS production, and autophagy induction.  

Collectively, these data suggest that formation of IsoLGs may be a key pathway linking 

oxidative injury to disease progression in fibrogenic liver diseases characterised by chronic 

exposure to oxidative stress products. 
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LIST OF ABBREVIATIONS 

 15-E2-IsoLG, isolevuglandin E2; 

 4-HNE, 4-hydroxy-2-nonenal; 

 α-SMA, alpha Smooth Muscle Actin;  

 ANOVA, analysis of variance; 

 ATF4, Activating transcription factor 4;  

 BiP, Immunoglobulin heavy chain binding protein;  

 BrdU, 5-Bromo-2-Deoxyuridine;  

 carboxy-DCF, (5(6)-Carboxy-2′,7′-dichlorofluorescein;  
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 carboxy-H2DCFDA, 2′,7′-dichlorodihydrofluorescein diacetate;  

 CHOP, CCAAT-enhancer-binding protein homologous protein;  

 CCL2, Chemokine (C-C motif) ligand 2;  

 CM, Complete Medium;  

 Col1A1, Collagen type I alpha 1;  

 CQ,chloroquine;  

 DAPI, 4′,6-diamidino-2-phenylindole;  

 ELISA, Enzyme-Linked Immunosorbent Assay;  

 ER, Endoplasmic Reticulum;  

 ERK, extracellular related kinase; 

 GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 

 HBSS: Hank’s balanced salt solution; 

 hHSC, Human Hepatic Stellate Cells; 

 ICAM-1, intracellular adhesion molecule; 

 IL1β, Interleukin-1 beta;  

 IL6, Interleukin-6;  

 IL8, Interleukin-8;  

 IsoLG, isolevuglandin; 

 IsoK, isoketals; 

 JNK, c-jun N-terminal kinase; 

 LC3B, light chain myosin 3;  

 LDH, lactate dehydrogenase; 

 LOX, Lysyl oxidase;  

 MTS, (4-sulfophenyl)-2H-tetrazolium, inner salt);  

 NF-kB, Nuclear Factor kappa B;  
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 p38MAPK, p38 mitogen-activated protein kinases;  

 PARP, poly (ADP-ribose) polymerase; 

 PDI, protein disulfide isomerase;  

 qRT-PCR, quantitative reverse transcription PCR; 

 ROS, Reactive Oxygen Species;  

 SEM, Standard Error of the Mean;  

 SFM, Serum Free Medium;  

 UPR, unfolded protein response; 

 TIMP-1, Metallopeptidase inhibitor 1;  

 XBP1, X-box binding protein 1. 
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Table 1: List of antibodies used in the study 

Antibody Cat No Source 

Smooth alpha actin A2547 Sigma 

Cleaved PARP (D214)  9544S Cell Signaling technology 

PARP  ab6079 Abcam 

PhosphoSAPK/JNK(Thr183/tyr185) 

(81E11) 

4668S Cell Signaling technology 

SAPK/JNK(56G8) 9258S Cell Signaling technology 
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ATF4 11815 Cell Signaling technology 

Bip/GRP78 3183 Cell Signaling technology 

ERK1/2 4695 Cell Signaling technology 

pERK 1/2 4370 Cell Signaling technology 

P38 MAPK 9212 Cell Signaling technology 

pP38 MAPK(Thr180/Tyr182) 4511 Cell Signaling technology 

CHOP 2895 Cell Signaling technology 

Tubulin 2144 Cell Signaling technology 

Donkey anti-goat IgG-HRP sc-2020 Santa Cruz Biotechnology 

Goat anti-mouse IgG-HRP sc-2055 Santa Cruz Biotechnology 

Goat anti-rabbit IgG-HRP sc-2054 Santa Cruz Biotechnology 

anti-mouse LC3B antibody  3868 Cell Signaling 

PDI (Alexa Fluor ®488 Conjugate) 5051 Cell Signaling 

 

 
 

Table 2: List of Taqman® assays used in the study 

Gene Catalogue number Source 

GAPDH Hs02758991_g1 Life Technologies LTD 

Collagen 1α1 Hs00164004_m1   Life Technologies LTD 

TIMP-1 Hs00171558_m1 Life Technologies LTD 

LOX Hs00942480_m1   Life Technologies LTD 

ICAM-1 Hs00164932_m1 Life Technologies LTD 

Interleukin 6 (IL-6) Hs00985639_m1 Life Technologies LTD 

MCP-1/CCL2 Hs00234140_m1 Life Technologies LTD 
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Interleukin 8 (IL-8) Hs00174103_m1 Life Technologies LTD 

Interleukin 1 (IL-1) Hs01555410_m1 Life Technologies LTD 

ATF-4 Hs00909569_g1 Life Technologies LTD 

XBP-1 Hs00231936_m1 Life Technologies LTD 

 

 
 

 
FIGURE LEGENDS: 

Figure 1: Human hepatic stellate cells (hHSC) were treated with the indicated doses of 

15-E2-IsoLG (levuglandin) for 24-48 hrs.  Cytotoxicity was assessed by lactate dehydrogenase 

leakage in culture supernatants (A-B), formazan reduction (MTS assay, C-D), and neutral red 

dye incorporation (E-F).  Cell proliferation was assessed by BrdU ELISA (G-H).  Graphs 

represent averages ± SEM of four replicates.  Data were analyzed via one-way ANOVA with 

Dunnett’s multiple comparisons test.  P values to indicate significance are referred to serum free 

medium (SFM) treated cells (*=P<0.05, ****=P<0.001).  As the LDH assay used was not 

compatible with serum containing medium, the CM samples are not included in these graphs. 

Figure 2: High dose IsoLGs cytotoxicity is mediated by activation of apoptosis.  hHSC 

were treated with 5 M 15-E2-IsoLG (levuglandin) for up to 24 to determine the mechanism of 

cytotoxicity.  Protein lysates collected at different time-points were analyzed for markers of 

apoptotic cell death via Western Blot (cleaved PARP, GADD153/CHOP, phosphorylated JNK), 

and normalized to tubulin as loading control. 

Figure 3: Exposure to IsoLGs in hHSC promotes the activation of different signaling 

pathways and -SMA, but has limited effect on markers of fibrogenic activation.  hHSC were 

treated with 0.5 M-0.5 nM 15-E2-IsoLG (levuglandin) for up to 24.  mRNA markers of 

fibrogenesis including collagen 1 alpha 1, tissue inhibitor of metalloproteinase 1, and lysyl 
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oxidase (LOX), were measured via qRT-PCR, and normalized to GAPDH as internal control.  

The activation of different signaling pathways and smooth muscle actin (αSMA) levels were 

measured via Western Blot.  Protein lysates were analyzed for phosphorylated/total levels of 

ERK, JNK, P38MAPK, and total levels, normalized to tubulin as loading control.   

Figure 4: Exposure to IsoLGs in hHSC promotes the activation of pro-inflammatory 

signaling pathways and production of ROS.  hHSC were treated with non-cytotoxic doses of 15-

E2-IsoLG for up to 24 and qRT-PCR was used to measure gene expression for selected 

adhesion molecules,cytokines and chemokines, normalized to GAPDH as internal control (A-E).  

Levels of secreted bioactive IL1 were measured in supernatants of cells treated for 48 hours, 

using HEK-Blue Cells and QuantiBlue assay (F).  In a subset of experiments, mRNA expression 

was quantified in IsoLG treated cells that were pre-treated for one hour with inhibitors of 

selected signaling pathways, namely JNK (SP600125, 20 M), p38 MAPK (SB203580, 10 M), 

and NF-KB (Pyrrolidinedithiocarbamate, PDTC, 50 M)(G).  Data are represented either as fold 

change with respect to SFM treated cells (calibrator),or as relative expression, and analysed via 

either one way ANOVA, or two-way ANOVA with Dunnett’s or Bonferroni’s multiple comparisons 

test, respectively.  HSC were treated with 0.5 M-50 nM 15-E2-IsoLG for one hour, prior to 

incubation with the carboxy-H2 DCFDA probe to detect intracellular reactive oxygen species 

(ROS) formation (H).  Cells positive for ROS production display green fluorescence, whereas 

total cell distribution is indicated by Hoechst blue staining as assessed by fluorescence 

microscope.  

Figure 5: IsoLGs exposure in HSC results in activation of autophagy.  hHSC were 

treated with selected doses of 15-E2-IsoLG for up to 24-48 hours.  Representative TEM images 

of control cells (SFM) (8000X-25000X magnification) and 0.5 M 15-E2-IsoLG treated cells 

(25000X-50000X magnification) for 24 (left panels) and 48 hours (right panels).  Ultrastructural 

analyses reveal markedly increased presence of multilamellar autophagic vescicles in IsoLGs 
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treated cells, indicative of autophagy (black arrows).  Ongoing autophagy was further confirmed 

by immunofluorescence staining for LC3B puncta (middle panels), in both HSC treated with 

IsoLGs, and with 15 M chloroquine (CQ) as positive control.  Lastly, autophagy was confirmed 

with Western blot analysis for LC3BII conversion.  In a subset of experiments, 15-E2-IsoLG 

treated cells were treated with bafilomycin for 24 hours to measure the levels of LC3B and of IL-

1 by Western Blot and qRT-PCR, respectively. 

Figure 6: IsoLGs exposure in HSC results in early activation of ER stress and unfolded protein 

response. hHSC were treated with selected doses of 15-E2-IsoLG for 2,4,8, and 24 hours.  

Levels and distribution of protein disulfide isomerase (PDI) were assessed via direct 

immunofluorescence.  Protein and mRNA levels of selected markers of the UPR were 

measured in 15-E2-IsoLG treated cells for 24 hours. 
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Highlights 
 

 Isolevuglandins (IsoLG) are described as novel activators of hepatic stellate cells 

 IsoLG are biologically active at concentrations as low as 500 pM 

 IsoLG promote activation of stress signaling pathways and redox changes 

 IsoLG induce a pro-inflammatory effect, in part mediated by autophagy activation 

 Autophagy may reduce toxicity from IsoLG adduction to cellular proteins 
 




