182 research outputs found

    Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture.

    Get PDF
    The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, while the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for ∼3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from >38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic dataset for cetaceans, spanning 6,527,596 aligned base pairs and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphininae. We carried out Bayesian estimation of species divergence times using MCMCTree, and compared our complete dataset to a subset of clocklike genes. Analyses using the complete dataset consistently showed less variance in divergence times than the reduced dataset. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicate that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene

    Teacher Tasks for Mathematical Insight and Reorganization of What it Means to Learn Mathematics

    Get PDF
    The mathematics-for-teachers tasks we discuss in this chapter have two qualities: (1) they offer teachers opportunities to experience the pleasure of mathematical insight; and (2) they aim to disrupt and reorganize teachers\u27 views of what it means to do and learn mathematics. Given that many future and inservice elementary teachers fear and dislike mathematics, it is perhaps not too far-fetched to suggest that there is a need for “math therapy.” We believe that a form of mathematics therapy may involve new and different experiences with mathematics. Such experiences, considered broadly to include questions or prompts for mathematical exploration, draw attention to deep mathematical ideas and offer the potential of experiencing the pleasure of significant mathematical insight. In our work with teachers we have developed and used a variety of mathematics tasks as opportunities for experiential therapy. The tasks aim to challenge some of the mathematical myths that future teachers believe to be true and are typically assumed by them in mathematics classrooms. The tasks have potential to disrupt teachers\u27 view of mathematics, and to start the process for reorganizing their thinking about what mathematics is and what it means to do and learn mathematics. In this chapter we describe and discuss four of the mathematics tasks which involve non-routine mathematics problems that we use in our mathematics-for-teachers program. This program is offered annually to our 440 future elementary school (K-8) teachers, who generally lack confidence in mathematics and often fear and/or dislike the subject. It is also offered to inservice teachers through a series of mathematics-for-teachers courses. A student response summarizes the effects of our approach

    Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers

    Get PDF
    Phylogeographic inference has provided extensive insight into the relative roles of geographical isolation and ecological processes during evolutionary radiations. However, the importance of cross-lineage admixture in facilitating adaptive radiations is increasingly being recognised, and suggested as a main cause of phylogenetic uncertainty. In this study, we used a double digest RADseq protocol to provide a high resolution (∼ 4 Million bp) nuclear phylogeny of the Delphininae. Phylogenetic resolution of this group has been especially intractable, likely because it has experienced a recent species radiation. We carried out cross-lineage reticulation analyses, and tested for several sources of potential bias in determining phylogenies from genome sampling data. We assessed the divergence time and historical demography of T. truncatus and T. aduncus by sequencing the T. aduncus genome and comparing it with the T. truncatus reference genome. Our results suggest monophyly for the genus Tursiops, with the recently proposed T. australis species falling within the T. aduncus lineage. We also show the presence of extensive cross-lineage gene flow between pelagic and European coastal ecotypes of T. truncatus, as well as in the early stages of diversification between spotted (Stenella frontalis; Stenella attenuata), spinner (Stenella longirostris), striped (Stenella coeruleoalba), common (Delphinus delphis), and Fraser’s (Lagenodelphis hosei) dolphins. Our study suggests that cross-lineage gene flow in this group has been more extensive and complex than previously thought. In the context of biogeography and local habitat dependence, these results improve our understanding of the evolutionary processes determining the history of this lineage

    Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans

    Get PDF
    Cetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans. FGF22, a hair follicle-enriched gene, exhibited pseudogenization, indicating that the function of this gene is no longer necessary in cetaceans that have lost most of their body hair. An evolutionary analysis revealed signatures of positive selection for FGF3 and FGF11, genes related to ear and tooth development and hypoxia, respectively. We found a D203G substitution in cetacean FGF9, which was predicted to affect FGF9 homodimerization, suggesting that this gene plays a role in the acquisition of rigid flippers for efficient manoeuvring. Cetaceans utilize low bone density as a buoyancy control mechanism, but the underlying genes are not known. We found that the expression of FGF23, a gene associated with reduced bone density, is greatly increased in the cetacean liver under hypoxic conditions, thus implicating FGF23 in low bone density in cetaceans. Altogether, our results provide novel insights into the roles of FGFs in cetacean adaptation to the aquatic environment.ope

    Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention

    Get PDF
    We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression

    Third generation cephalosporin use in a tertiary hospital in Port of Spain, Trinidad: need for an antibiotic policy

    Get PDF
    BACKGROUND: Tertiary care hospitals are a potential source for development and spread of bacterial resistance being in the loop to receive outpatients and referrals from community nursing homes and hospitals. The liberal use of third-generation cephalosporins (3GCs) in these hospitals has been associated with the emergence of extended-spectrum beta- lactamases (ESBLs) presenting concerns for bacterial resistance in therapeutics. We studied the 3GC utilization in a tertiary care teaching hospital, in warded patients (medical, surgical, gynaecology, orthopedic) prescribed these drugs. METHODS: Clinical data of patients (≥ 13 years) admitted to the General Hospital, Port of Spain (POSGH) from January to June 2000, and who had received 3GCs based on the Pharmacy records were studied. The Sanford Antibiotic Guide 2000, was used to determine appropriateness of therapy. The agency which procures drugs for the Ministry of Health supplied the cost of drugs. RESULTS: The prevalence rate of use of 3GCs was 9.5 per 1000 admissions and was higher in surgical and gynecological admissions (21/1000) compared with medical and orthopedic (8 /1000) services (p < 0.05). Ceftriaxone was the most frequently used 3GC. Sixty-nine (36%) patients without clinical evidence of infection received 3Gcs and prescribing was based on therapeutic recommendations in 4% of patients. At least 62% of all prescriptions were inappropriate with significant associations for patients from gynaecology (p < 0.003), empirical prescribing (p < 0.48), patients with undetermined infection sites (p < 0.007), and for single drug use compared with multiple antibiotics (p < 0.001). Treatment was twice as costly when prescribing was inappropriate CONCLUSIONS: There is extensive inappropriate 3GC utilization in tertiary care in Trinidad. We recommend hospital laboratories undertake continuous surveillance of antibiotic resistance patterns so that appropriate changes in prescribing guidelines can be developed and implemented. Though guidelines for rational antibiotic use were developed they have not been re-visited or encouraged, suggesting urgent antibiotic review of the hospital formulary and instituting an infection control team. Monitoring antibiotic use with microbiology laboratory support can promote rational drug utilization, cut costs, halt inappropriate 3GC prescribing, and delay the emergence of resistant organisms. An ongoing antibiotic peer audit is suggested

    A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters.</p> <p>Results</p> <p>We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses.</p> <p>Conclusions</p> <p>The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats.</p

    Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae

    Get PDF
    BACKGROUND: Previous DNA-based phylogenetic studies of the Delphinidae family suggest it has undergone rapid diversification, as characterised by unresolved and poorly supported taxonomic relationships (polytomies) for some of the species within this group. Using an increased amount of sequence data we test between alternative hypotheses of soft polytomies caused by rapid speciation, slow evolutionary rate and/or insufficient sequence data, and hard polytomies caused by simultaneous speciation within this family. Combining the mitogenome sequences of five new and 12 previously published species within the Delphinidae, we used Bayesian and maximum-likelihood methods to estimate the phylogeny from partitioned and unpartitioned mitogenome sequences. Further ad hoc tests were then conducted to estimate the support for alternative topologies. RESULTS: We found high support for all the relationships within our reconstructed phylogenies, and topologies were consistent between the Bayesian and maximum-likelihood trees inferred from partitioned and unpartitioned data. Resolved relationships included the placement of the killer whale (Orcinus orca) as sister taxon to the rest of the Globicephalinae subfamily, placement of the Risso's dolphin (Grampus griseus) within the Globicephalinae subfamily, removal of the white-beaked dolphin (Lagenorhynchus albirostris) from the Delphininae subfamily and the placement of the rough-toothed dolphin (Steno bredanensis) as sister taxon to the rest of the Delphininae subfamily rather than within the Globicephalinae subfamily. The additional testing of alternative topologies allowed us to reject all other putative relationships, with the exception that we were unable to reject the hypothesis that the relationship between L. albirostris and the Globicephalinae and Delphininae subfamilies was polytomic. CONCLUSION: Despite their rapid diversification, the increased sequence data yielded by mitogenomes enables the resolution of a strongly supported, bifurcating phylogeny, and a chronology of the divergences within the Delphinidae family. This highlights the benefits and potential application of large mitogenome datasets to resolve long-standing phylogenetic uncertainties
    corecore