8,094 research outputs found

    Weibel instability and associated strong fields in a fully 3D simulation of a relativistic shock

    Get PDF
    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic (HD) like shock structure. In the leading shock, electron density increases by a factor of 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the AGN and GRB context.Comment: 4 pages, 3 figures, ApJ Letters, in pres

    Generalized Cheeger-Gromoll Metrics and the Hopf map

    Get PDF
    We show, using two different approaches, that there exists a family of Riemannian metrics on the tangent bundle of a two-sphere, which induces metrics of constant curvature on its unit tangent bundle. In other words, given such a metric on the tangent bundle of a two-sphere, the Hopf map is identified with a Riemannian submersion from the universal covering space of the unit tangent bundle onto the two-sphere. A hyperbolic counterpart dealing with the tangent bundle of a hyperbolic plane is also presented.Comment: 17 pages, Dedicated to Professor Udo Simon on his seventieth birthda

    Psychophysical Responses Comparison in Spatial Visual, Audiovisual, and Auditory BCI-Spelling Paradigms

    Full text link
    The paper presents a pilot study conducted with spatial visual, audiovisual and auditory brain-computer-interface (BCI) based speller paradigms. The psychophysical experiments are conducted with healthy subjects in order to evaluate a difficulty and a possible response accuracy variability. We also present preliminary EEG results in offline BCI mode. The obtained results validate a thesis, that spatial auditory only paradigm performs as good as the traditional visual and audiovisual speller BCI tasks.Comment: The 6th International Conference on Soft Computing and Intelligent Systems and The 13th International Symposium on Advanced Intelligent Systems, 201

    Determining physical properties of the cell cortex

    Get PDF
    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse grained physical description of the cortex in terms of a two dimensional thin film of an active viscoelastic gel. To determine the Maxwell time, the hydrodynamic length and the ratio of active stress and per-area friction, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. We provide an accurate and robust means for measuring physical parameters of the actomyosin cortical layer.It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights in the active mechanics processes that govern tissue-scale morphogenesis.Comment: 17 pages, 4 figure

    Results from K2K and status of T2K

    Full text link
    Results from the K2K experiment and status of the T2K experiment are reported.Comment: 9 pages, 6 figures. Talk at International Conference on New Trends in High-Energy Physics (Crimea2005), Yalta, Ukraine, September 10-17, 200
    corecore