4,247 research outputs found

    Gluon Chain Model of the Confining Force

    Full text link
    We develop a picture of the QCD string as a chain of constituent gluons, bound by attractive nearest-neighbor forces which may be treated perturbatively. This picture accounts for both Casimir scaling at large N, and the asymptotic center dependence of the static quark potential. We discuss the relevance, to the gluon-chain picture, of recent three-loop results for the static quark potential. A variational framework is presented for computing the minimal energy and wavefunction of a long gluon chain, which enables us to derive both the logarithmic broadening of the QCD flux tube (``roughening''), and the existence of a Luscher -c/R term in the potential.Comment: 25 pages, 5 figures, latex2

    Effect of Tilt Sensor versus Heel Loading on Neuroprosthesis Stimulation Reliability and Timing for Individuals Post-Stroke during Level and Non- Level Treadmill Walking

    Get PDF
    Study background: Non-level walking may adversely affect stimulation of neuroprostheses as initial programming is performed during level walking. The objectives of this study were to assess stimulation reliability of tilt and heel sensor-based neuroprosthesis stimulation during level and non-level walking, examine stimulation initiation and termination timing during level and non-level walking, and determine whether heel or tilt sensor-based stimulation control is more robust for non-level ambulation. Methods: Eight post-stroke individuals with drop foot who were able to actively ambulate within the community were selected for participation. Each subject acclimated to the neuroprosthesis and walked on a treadmill randomly positioned in inclined, level and declined orientations. The primary measures of interest were stimulation reliability and timing. Results: Statistically significant differences in tilt, but not heel, sensor-based stimulation reliability were observed between level and non-level walking trials. Tilt sensor-based stimulation initiation occurred significantly closer to swing as the treadmill processed from declined to inclined orientations. No statistically significant differences in stimulation reliability or timing were observed between theoretical heel versus clinical tilt sensor-based stimulation control. Discussion and conclusions: Tilt sensor-based stimulation reliability may be adversely affected by non-level walking. Differences in stimulation initiation timing with tilt sensor-based control during non-level walking may be advantageous as stimulation initiation closer to swing during inclined ambulation may allow for greater ankle plantar flexion to assist with forward progression. Despite a lack of significant differences in stimulation reliability or timing between sensors, theoretical heel sensor-based stimulation control exhibited more consistent stimulation timing with less variability than for tilt sensor-based stimulation during non-level ambulation

    A Rehabilitation Engineering Course for Biomedical Engineers

    Get PDF
    This paper describes an upper division elective course in rehabilitation engineering that addresses prosthetics and orthotics, wheelchair design, seating and positioning, and automobile modifications for individuals with disabilities. Faculty lectures are enhanced by guest lectures and class field trips. Guest lecturers include a prosthetist and a lower extremity amputee client, an engineer/prosthetist specializing in the upper extremity, and a rehabilitation engineer. The lower extremity prosthetist and his client present a case study for prosthetic prescription, fabrication, fitting, alignment, and evaluation. The engineer/prosthetist contrasts body-powered versus externally powered upper extremity prostheses and associated design, fitting, and functional considerations; he also discusses myoelectric signal conditioning, signal processing, and associated control strategies for upper extremity prosthetic control. Finally, the rehabilitation engineer presents case studies related to assessment and prescription of mobility aids, environmental control systems, and children\u27s toys. The course also includes visits to a local prosthetic and orthotic facility to observe typical fabrication, fitting, and alignment procedures and a driver rehabilitation program for exposure to driver assessment, training, and common vehicle modifications. These applications of biomedical engineering to persons with disabilities have been well received by the students and have furthered interdisciplinary design and research projects

    Nonlinear Elastic Material Property Estimation of Lower Extremity Residual Limb Tissues

    Get PDF
    The interface stresses between the residual limb and prosthetic socket have been studied to investigate prosthetic fit. Finite-element models of the residual limb-prosthetic socket interface facilitate investigation of the mechanical interface and may serve as a potential tool for future prosthetic socket design. However, the success of such residual limb models to date has been limited, in large part due to inadequate material formulations used to approximate the mechanical behavior of residual limb soft tissues. Nonlinear finite-element analysis was used to simulate force-displacement data obtained during in vivo rate-controlled (1, 5, and 10 mm/s) cyclic indentation of the residual limb soft tissues of seven individuals with transtibial amputation. The finite-element models facilitated determination of an appropriate set of nonlinear elastic material coefficients for bulk soft tissue at discrete clinically relevant test locations. Axisymmetric finite-element models of the residual limb bulk soft tissue in the vicinity of the test location, the socket wall and the indentor tip were developed incorporating contact analysis, large displacement, and large strain, and the James-Green-Simpson nonlinear elastic material formulation. Model dimensions were based on medical imaging studies of the residual limbs. The material coefficients were selected such that the normalized sum of square error (NSSE) between the experimental and finite-element model indentor tip reaction force was minimized. A total of 95% of the experimental data were simulated using the James-Green-Simpson material formulation with an NSSE less than 5%. The respective James-Green-Simpson material coefficients varied with subject, test location, and indentation rate. Therefore, these coefficients cannot be readily extrapolated to other sites or individuals, or to the same site and individual some time after testing

    Defining the Force between Separated Sources on a Light Front

    Get PDF
    The Newtonian character of gauge theories on a light front requires that the longitudinal momentum P^+, which plays the role of Newtonian mass, be conserved. This requirement conflicts with the standard definition of the force between two sources in terms of the minimal energy of quantum gauge fields in the presence of a quark and anti-quark pinned to points separated by a distance R. We propose that, on a light front, the force be defined by minimizing the energy of gauge fields in the presence of a quark and an anti-quark pinned to lines (1-branes) oriented in the longitudinal direction singled out by the light front and separated by a transverse distance R. Such sources will have a limited 1+1 dimensional dynamics. We study this proposal for weak coupling gauge theories by showing how it leads to the Coulomb force law. For QCD we also show how asymptotic freedom emerges by evaluating the S-matrix through one loop for the scattering of a particle in the N_c representation of color SU(N_c) on a 1-brane by a particle in the \bar N_c representation of color on a parallel 1-brane separated from the first by a distance R<<1/Lambda_{QCD}. Potential applications to the problem of confinement on a light front are discussed.Comment: LaTeX, 15 pages, 12 figures; minor typos corrected; numerical correction in equation 3.

    Electron Beam Ion Sources

    Full text link
    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.Comment: 37 pages, contribution to the CAS-CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012, edited by R. Baile

    The Outburst of the Blazar AO 0235+164 in 2006 December: Shock-in-Jet Interpretation

    Full text link
    We present the results of polarimetric (RR band) and multicolor photometric (BVRIJHKBVRIJHK) observations of the blazar AO 0235+16 during an outburst in 2006 December. The data reveal a short timescale of variability (several hours), which increases from optical to near-IR wavelengths; even shorter variations are detected in polarization. The flux density correlates with the degree of polarization, and at maximum degree of polarization the electric vector tends to align with the parsec-scale jet direction. We find that a variable component with a steady power-law spectral energy distribution and very high optical polarization (30-50%) is responsible for the variability. We interpret these properties of the blazar withina model of a transverse shock propagating down the jet. In this case a small change in the viewing angle of the jet, by 1o\lesssim 1^o, and a decrease in the shocked plasma compression by a factor of \sim1.5 are sufficient to account for the variability.Comment: 22 pages, 8 figures, accepted for Ap

    Generalization and evaluation of the process-based forest ecosystem model PnET-CN for other biomes

    Get PDF
    Terrestrial ecosystems play an important role in carbon, water, and nitrogen cycling. Process-based ecosystem models, including PnET-CN, have been widely used to simulate ecosystem processes during the last two decades. PnET-CN is a forest ecosystem model, originally designed to predict ecosystem carbon, water, and nitrogen dynamics of temperate forests under a variety of circumstances. Among terrestrial ecosystem models, PnET-CN offers unique benefits, including simplicity and transparency of its structure, reliance on data-driven parameterization rather than calibration, and use of generalizeable relationships that provide explicit linkages among carbon, water and nitrogen cycles. The objective of our study was to apply PnET-CN to non-forest biomes: grasslands, shrublands, and savannas. We determined parameter values for grasslands and shrublands using the literature and ecophysiological databases. To assess the usefulness of PnET-CN in these ecosystems, we simulated carbon and water fluxes for six AmeriFlux sites: two grassland sites (Konza Prairie and Fermi Prairie), two open shrubland sites (Heritage Land Conservancy Pinyon Juniper Woodland and Sevilleta Desert Shrubland), and two woody savanna sites (Freeman Ranch and Tonzi Ranch). Grasslands and shrublands were simulated using the biome-specific parameters, and savannas were simulated as mixtures of grasslands and forests. For each site, we used flux observations to evaluate modeled carbon and water fluxes: gross primary productivity (GPP), ecosystem respiration (ER), net ecosystem productivity (NEP), evapotranspiration (ET), and water yield. We also evaluated simulated water use efficiency (WUE). PnET-CN generally captured the magnitude, seasonality, and interannual variability of carbon and water fluxes as well as WUE for grasslands, shrublands, and savannas. Overall, our results show that PnET-CN is a promising tool for modeling ecosystem carbon and water fluxes for non-forest biomes (grasslands, shrublands, and savannas), and especially for modeling GPP in mature biomes. Limitations in model performance included an overestimation of seasonal variability in GPP and ET for the two shrubland sites and overestimation of early season ER for the two shrubland sites and Freeman Ranch. Future modifications of PnET-CN for non-forest biomes should focus on belowground processes, including water storage in dry shrubland soils, root growth and respiration in grasslands, and soil carbon fluxes for all biomes

    Color Variability of the Blazar AO 0235+16

    Full text link
    Multicolor (UBVRIJHK) observations of the blazar AO 0235+16 are analyzed. The light curves were compiled at the Turin Observatory from literature data and the results of observations obtained in the framework of the WEBT program (http://www.to.astro/blazars/webt/). The color variability of the blazar was studied in eight time intervals with a sufficient number of multicolor optical observations; JHK data are available for only one of these. The spectral energy distribution (SED) of the variable component remained constant within each interval, but varied strongly from one interval to another. After correction for dust absorption, the SED can be represented by a power law in all cases, providing evidence for a synchrotron nature of the variable component. We show that the variability at both optical and IR wavelengths is associated with the same variable source.Comment: 11 pages, 9 figures, 4 tables, accepted for publication in Astronomy Report
    corecore