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Abstract: The interface stresses between the residual limb and prosthetic socket have been studied to 
investigate prosthetic fit. Finite-element models of the residual limb-prosthetic socket interface facilitate 
investigation of the mechanical interface and may serve as a potential tool for future prosthetic socket 
design. However, the success of such residual limb models to date has been limited, in large part due to 
inadequate material formulations used to approximate the mechanical behavior of residual limb soft 
tissues. Nonlinear finite-element analysis was used to simulate force-displacement data obtained during 
in vivo rate-controlled (1, 5, and 10 mm/s) cyclic indentation of the residual limb soft tissues of seven 
individuals with transtibial amputation. The finite-element models facilitated determination of an 
appropriate set of nonlinear elastic material coefficients for bulk soft tissue at discrete clinically relevant 
test locations. Axisymmetric finite-element models of the residual limb bulk soft tissue in the vicinity of 
the test location, the socket wall and the indentor tip were developed incorporating contact analysis, 
large displacement, and large strain, and the James-Green-Simpson nonlinear elastic material 
formulation. Model dimensions were based on medical imaging studies of the residual limbs. The 
material coefficients were selected such that the normalized sum of square error (NSSE) between the 
experimental and finite-element model indentor tip reaction force was minimized. A total of 95% of the 
experimental data were simulated using the James-Green-Simpson material formulation with an NSSE 
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less than 5%. The respective James-Green-Simpson material coefficients varied with subject, test 
location, and indentation rate. Therefore, these coefficients cannot be readily extrapolated to other sites 
or individuals, or to the same site and individual some time after testing. 
 

Nomenclature 

𝐶𝐶𝑖𝑖 Nonlinear elastic material coefficients; subscript indicates the order in strain invariant. 
𝐶𝐶𝑖𝑖𝑖𝑖 Nonlinear elastic material coefficients in James–Green–Simpson material model; 𝑖𝑖 = order in 

first strain invariant 𝐼𝐼1; 𝑗𝑗 = order in second strain invariant 𝐼𝐼2. 
𝐸𝐸𝑖𝑖𝑖𝑖 Components of Green–Lagrange finite strain tensor. 

𝐹𝐹 Force. 
𝐹𝐹exp Experimentally measured indentor reaction force. 

𝐹𝐹𝑓𝑓𝑓𝑓 Finite-element indentor reaction force. 
𝐹𝐹exp𝑚𝑚𝑚𝑚𝑚𝑚 Maximum experimental indentor reaction force. 

𝐼𝐼1, 𝐼𝐼2 First and second invariants of Green–Lagrange finite strain tensor.  
Normalized sum of square error. 

𝑟𝑟 Radial coordinate in cylindrical coordinate system. 
𝑢𝑢𝑖𝑖  Components of material displacement vector. 
𝑊𝑊 Strain energy density (energy per undeformed volume). 
𝑋𝑋𝑖𝑖 Components of position vector of a material particle at initial (undeformed) configuration. 
𝑥𝑥𝑖𝑖 Components of position vector of a material particle at current (deformed) configuration. 
𝑧𝑧 Axial coordinate of cylindrical coordinate system. 

Λ𝑖𝑖𝜆𝜆𝑖𝑖 Stretch (former is Malvern's [60] notation in Lagrangian sense). 
𝜃𝜃 Angular coordinate of the cylindrical coordinate system. 

 
SECTION I. 

Introduction 

To ambulate effectively, lower limb amputees require a prosthesis. Many amputees, 
however, are not satisfied with the fit of their prosthesis.1 The poor fit may cause 
discomfort and pain for the amputee, as well as potential tissue degradation and/or 
impaired mobility. 

Several researchers have looked at the interface stress distribution between the 
residual limb and prosthetic socket as a means of objectively describing prosthetic fit. 
Potential problems in prosthetic fit might thereby be identified and corrected before 
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significant tissue damage ensues. Both Sanders2 and Silver-Thorn et al.3 present extensive 
reviews of prosthetic interface stress investigations. Many investigators measured 
prosthetic interface stresses using a variety of “pressure” transducers. In general, these 
measurements were limited to relatively small areas of the residual limb and, with the 
exception of Sanders and Daly,4,5 Sanders et al.,6,7 and Zhang et al.,8 who measured both 
normal and shear stress, these measurements were of the normal stress (pressure) 
distribution. These interface stress-measuring techniques required fabrication of special 
sockets that were appropriate for scientific investigation only and were not for routine 
clinical use. 

Two commercially available devices for measurement of prosthetic interface 
pressures in a clinical environment are the Rincoe Socket Fitting System (R. G. Rincoe & 
Associates, Golden, CO) and the Pliance High Resolution Pad (Novel Electronics, Inc., St. 
Paul, MN). These systems do not require fabrication of special test sockets or modification 
of the current prosthesis. However, these devices provide interface pressure measures at a 
limited number of sites and yield no information regarding the shear stress. 

Due to these technological limitations, researchers have used computer models to 
estimate the prosthetic interface stresses (review articles3,9 and10). Computer models, 
typically finite-element analyses, allow investigation of both the normal and shear stress 
distributions for the entire residual limb-prosthetic socket interface. 

Finite-element models of the residual limb and the prosthetic socket of individuals 
with transtibial3,9–10,11,12,13,14,15,16,17,18 and transfemoral19–20,21,22,23,24,25,26 amputation have 
been used to investigate residual limb-prosthetic socket biomechanics and to estimate the 
interface stress distribution. These models have the potential to provide insight into 
prosthetic socket design principles and alternative design protocols. 

Although these investigations provided some insight regarding residual limb-
prosthetic socket interaction, none were successful in accurately estimating the interface 
stresses. The in vivo soft tissue indentation studies performed by Houston et al.,16 Vannah 
and Childress,27 Silver-Thorn,28 and Zheng and Mak29 reveal that the compressive behavior 
of lower extremity soft tissues is nonlinear and viscoelastic, as opposed to the linear elastic 
material approximation used in the majority of the aforementioned finite-element analyses. 
Furthermore, the compressive soft tissue behavior varies among subjects and between test 
locations for the same subject. Therefore, it is necessary to determine the nonlinear 
material behavior of the soft tissue in compression for each individual at various locations 
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on the residual limb for accurate computer simulation. These nonlinear elastic material 
formulations can then be extended to simulate the viscoelastic response. 

Finite-element-based material identification techniques have been used by many 
investigators to determine the material properties of various structures, including 
biological tissues.30,31–32,33,34,35,36,37,38,39,40,41 In general, these “inverse methods” assume a 
constitutive equation for the material, and estimate the material coefficients by simulating 
experimental force-deformation data with a computer model (review41). 

The purpose of this research is to estimate the nonlinear elastic material properties 
of the residual limb soft tissues during the loading portion of in vivo indentation using 
inverse methods. Various Mooney-type material formulations have been used for modeling 
the nonlinear elastic response of bulk muscular soft tissue to in vivo indentation.27,42–43,44,45 
It is hypothesized that the James–Green–Simpson (or third-order deformation Mooney)46–

47,48,49,50 nonlinear elastic material model can approximate the observed nonlinear elastic 
behavior of the bulk soft tissue of the residual limbs of individuals with trans-tibial 
amputation. 

SECTION II. 

Methods 

Force-displacement loading data obtained during cyclic indentation of the residual 
limbs of seven individuals1. with transtibial amputation were simulated using finite-
element analysis. For each subject, the residual limb soft tissues at 9 to 11 test locations 
relevant to prosthetic socket rectification were tested at rates 1, 5, and 10 mm/s on 
separate occasions. The force-displacement data (cycles 6–10; cycles 1–5 served to 
precondition the tissues) during loading were regressed to a third-order polynomial.28,51 

These loading data were simulated using axisymmetric finite-element models2. of 
the soft tissue in the vicinity of the test location (Fig. 1). The soft tissue thickness at 
respective test locations was estimated based on magnetic resonance images or computed 
tomography scans of the residual limb (Table I). The radial dimension of the simulated soft 
tissue was at least twice the soft tissue thickness to minimize the edge effects.  
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Fig. 1. Soft tissue indentation experiment (left) and axisymmetric finite-element model simulating the 
soft tissue indentation process (right). 
 
Table I Soft tissue thickness measures at the respective test locations 

 

In addition to the soft tissue, the finite-element model included the indentor tip 
(4.9-mm diameter) and prosthetic socket as rigid bodies in contact with soft tissue. The 
soft tissue was assumed to stick the rigid bony interface (fixed radial and axial 
displacements), was fixed in the radial direction along the symmetry axis (𝑧𝑧 = 0), and was 
free at the far radial end. Preliminary analyses identified little variation in the soft tissue 
reaction force for frictional versus frictionless contact; to minimize computational effort, 
friction was neglected in subsequent analyses. 

The soft tissue was approximated using four-node quadrilateral axisymmetric 
elements. A master mesh was created based upon systematic mesh refinement (i.e., 
convergence of the indentor reaction force to within 2% of that of the previous coarser 
mesh). The soft tissue in this refined master mesh conformed to the indentor geometry for 
large indentations. The master mesh was subsequently modified (with purged elements or 
scaling and/or moving modified boundaries) to correspond to the tissue thickness of the 
respective test location as measured by the imaging studies. The mesh under the indentor 
tip contained elements with edge lengths of 0.1 mm so as to model the contact and highest 
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stress and strain gradients accurately. Other regions of the mesh contained larger 
elements. The transition between these varying sized elements incorporated nodal ties, 
thereby retaining regularly shaped elements. The number of elements in the various finite-
element models ranged from 328 to 490 (383 to 562 nodes), depending on the soft tissue 
thickness at the respective site. 

The bulk soft tissue was approximated as a single homogeneous, isotropic (in the 
undeformed configuration), nonlinear elastic, incompressible material represented by the 
James–Green–Simpson strain energy density function,46,47–48,49,50,52–53,54 as follows: 

𝑊𝑊 = 𝐶𝐶10(𝐼𝐼1 − 3) + 𝐶𝐶01(𝐼𝐼2 − 3)
+𝐶𝐶11(𝐼𝐼1 − 3)(𝐼𝐼2 − 3)
+𝐶𝐶20(𝐼𝐼1 − 3)2 + 𝐶𝐶30(𝐼𝐼1 − 3)3

 

(1) 
 
where 𝑊𝑊 is the strain energy density (energy-per-unit undeformed volume), 𝐼𝐼1 and 𝐼𝐼2 are 
the first and second invariants of Green–Lagrange finite strain tensor, and 𝐶𝐶𝑖𝑖𝑖𝑖 are the 
nonlinear elastic material coefficients to be determined. 

Due to incompressible material and axisymmetry assumptions, two of the three 
stretches are dependent, and the two invariants of Green–Lagrange strain tensor 𝐼𝐼1 and 𝐼𝐼2, 
are equivalent—as shown in the appendix. The general James–Green–Simpson material 
model was reduced from the five-parameter model shown in (1) to a three-parameter 
model by 1) equating the first-order material coefficients (in terms of the strain invariants) 
𝐶𝐶10 = 𝐶𝐶01 = 𝐶𝐶1 and 2) equating the second-order material coefficients (in terms of the 
strain invariants) 𝐶𝐶11 = 𝐶𝐶20 = 𝐶𝐶2. The third-order material coefficient (in terms of strain 
invariants) was referenced as 𝐶𝐶3 = 𝐶𝐶30.  
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Fig. 2. Force-displacement data during the search for nonlinear elastic material properties (Subject 1, 
distal popliteal region, thickness = 47.8 mm, indentation rate = 10 mm/s) (a). For reference, the results 
for an optimized linear elastic material formulation (E = 73 kPa, ν = 0.5, NSSE = 13.5) are also shown. 
The corresponding soft tissue material properties (bars) and associated NSSE (dashed line), during the 
search is shown in (b). 

In addition to the material nonlinearity, additional nonlinearities (namely, large 
displacements and strains) were imposed on the tissue during the experimental protocol 
and were included in the finite-element analyses. 

To simulate the soft tissue indentation, the indentor tip was positioned using the 
initial velocity option of the finite-element software, with little computational effort. This 
tip was then displaced at a rate of 1, 5, or 10 mm/s until the maximum experimental 
displacement was imposed (35 equal time increments). The convergence criterion was 
such that the maximum residual force was less than 2% of the maximum nodal force for 
each time step. The soft tissue reaction force under the indentor tip as a function of tip 
displacement was then contrasted with the experimental force-displacement data. This 
comparison enabled identification of the material coefficients. 

The heuristic search process for a suitable set of material coefficients began with an 
initial guess, 𝐶𝐶1 = 𝐶𝐶2 = 𝐶𝐶3 = 1 kPa. Increases in any of the material coefficients resulted in 
an increase in the strain energy density and the reaction force exerted by the tissue on the 
indentor tip. Preliminary sensitivity analysis on the material coefficients indicated that 𝐶𝐶1 
accounted for the initial stiffness of the soft tissue at low strains, 𝐶𝐶2 accounted for the 
stiffening of the tissue with increasing strain, and 𝐶𝐶3 caused increased stiffening at large 
strains. 
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Due to large variations in soft tissue thickness and maximum tissue displacement 
during experimentation, a robust efficient optimization algorithm was not identified. 
During the subsequent manual material coefficient search process, two guidelines were 
followed.  

• 𝐶𝐶1 was modified to simulate the experimental behavior at low strains (i.e., small 
indentation). 

• 𝐶𝐶2 and 𝐶𝐶3 were then modified, depending on the curvature of the force-displacement 
relationship, to approximate the tissue stiffness at higher strains. 

Due to the highly nonlinear nature of the problem, this search process was iterative. 
These iterations continued until the normalized sum of square error (NSSE) between the 
experimental and the finite-element indentor reaction force was less than 1% or appeared 
to have converged. The NSSE is defined as 

 

NSSE = �  
35

𝑖𝑖=1

�
𝐹𝐹exp𝑖𝑖 − 𝐹𝐹fei

𝐹𝐹exp𝑚𝑚𝑚𝑚𝑚𝑚

�
2

 

(2) 
 
where 𝐹𝐹exp is the experimentally measured indentor reaction force, 𝐹𝐹fe is the finite-element 
indentor reaction force, 𝑖𝑖 is the respective time step, and 𝐹𝐹exp𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum 
experimental reaction force to indentation. 
 
SECTION III. 

Results 

The James–Green–Simpson nonlinear elastic constitutive equation was used to 
simulate the nonlinear force-displacement behavior of residual limb soft tissues, as 
measured during cyclic rate-controlled indentation. The results of a representative 
material coefficient search are summarized in Fig. 2. For the initial estimate of material 
coefficients (Trial 1) 𝐶𝐶1 = 𝐶𝐶2 = 𝐶𝐶3 =  1 kPa, the simulated force deformation was softer 
than the experimental data, and the stiffening behavior is less pronounced. In the second 
trial, the increase in , 𝐶𝐶1 𝐶𝐶2, and 𝐶𝐶3 to 2 kPa resulted in a steeper initial slope of the force-
displacement curve, although pronounced stiffening as the indentation progressed was not 
observed due to relatively small maximum soft tissue strains in this example. The stiffening 
behavior was increased in the third and fourth trials, when  𝐶𝐶2was increased to 10 and 15 
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kPa, respectively. As the NSSE for the fourth trial was less than 1%, the search process was 
terminated after the fourth trial. The corresponding nonlinear elastic material coefficients 
and the resultant errors are shown in Fig. 2(b). [For reference, the results of a linear elastic 
material simulation (i.e., 𝐸𝐸 =  73 kPa, 𝜈𝜈 = 0.5, NSSE = 13.5%) are also shown. Although 
this is a linear elastic material model, other nonlinearities due to contact, finite strain, large 
displacements and rotations are present, and contribute to the nonlinear force-
displacement behavior seen during the simulation.] 

The in vivo rate-controlled indentation tests performed on the residual limbs of 
seven individuals with transtibial amputation yielded 254 force-displacement data sets for 
simulation. Finite-element models of 14 (6%) of these data sets failed. Nearly 80% (11) of 
these failures were attributed to excessive indentation with respect to the local soft tissue 
thickness (i.e., indentation exceeded 75±17% of the local soft tissue thickness), causing 
local inside-out elements due to excessive mesh deformation. The remaining three failures 
occurred at sites where the soft tissue was both thin and stiff and where simulation 
resulted in soft tissue nodes slipping out of the contact zone (i.e., indentor tip area) due to 
the frictionless contact assumption. Seven of the failed models were at the patellar tendon 
region, a pressure-tolerant area with substantial deformation with respect to overall soft 
tissue thickness. Other failed simulation sites included the fibular head (3), the proximal 
medial tibial flare (3), and the proximal popliteal (1) regions. Among the 240 simulated 
data sets, 228 (95%) were modeled with an NSSE less than 5% (Fig. 3). Convergence to the 
desired NSSE level (i.e., less than 1% or apparent convergence) typically required four to 
eight iterations.  

 
Fig. 3. NSSE distribution for the 240 simulated data sets. 
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The NSSEs for these nonlinear elastic material models are summarized in Fig. 4(a) 
for each of the respective test subjects. With the exception of Subjects 2b and 5b, the mean 
NSSE was less than 1.5%, with a standard deviation less than 2%. The resultant variability 
in the NSSE as a function of the respective test site is shown in Fig. 4(b). The mean NSSE 
exceeded 2% at the proximal medial tibial flare, proximal lateral tibial flare, and patellar 
tendon locations. Greater variability in the NSSE was observed at the fibular shaft and 
proximal medial tibial flare locations. Finally, in Fig. 4(c), the variation in the NSSE is 
presented in terms of the indentation rate. Although the mean NSSE was similar for all 
three rates, greater variability was observed at 5 mm/s. 

The variability in the material parameters themselves (as opposed to the variability 
in the NSSE presented previously) is summarized for two representative subjects, Subjects 
5 and 7, in Figs. 5 and 6. The material coefficients differed for the various indentation rates 
at the same test site. These parameters also varied with test location and test subject. 

For the 240 simulated data files (i.e., seven subjects, three indentation rates), the 
James–Green–Simpson nonlinear elastic material coefficients ranged from 0.01 ≤ 𝐶𝐶1 ≤ 700 
kPa, 0.01 ≤ 𝐶𝐶2 ≤ 2350 kPa, and 0.01 ≤ 𝐶𝐶3 ≤ 250 000 kPa. 

SECTION IV. 

Discussion and Conclusion 

It has been suggested that linear elastic representation of residual limb soft tissues 
is a crude approximation, and that a more accurate description is needed for improved 
simulation of the residual limb-prosthetic socket interface using finite-element 
analysis.3,4,11,12,28,29,55 A finite-element simulation incorporating a linear elastic material 
formulation [Fig. 2(a)] demonstrated the inability of a linear elastic material formulation to 
simulate the observed nonlinear material behavior of the soft tissue, supporting the 
aforementioned claim. In contrast, the James–Green–Simpson nonlinear elastic material 
model, one of the simplest phenomenological nonlinear elastic material formulations 
available in literature, was capable of simulating the experimentally observed nonlinear 
compressive force-displacement behavior of the residual limb bulk soft tissues of 
individuals with transtibial amputation. The NSSE was less than 5% for 95% (228 of 240) 
of the data files simulated using this nonlinear elastic material model. 

For models with an NSSE greater than 5% [Fig. 3], the experimental data sets 
exhibited tissue softening with increasing indentation, which could not be simulated with 
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the assumed material model. Model failure, or the inability to simulate the entire 
experimental indentation range, was due to either indentation exceeding 75% of the soft 
tissue thickness or thin stiff soft tissue at the respective test location.  

 

 

 
Fig. 4. Mean NSSE and the corresponding standard deviation and sample sizes (numbers in bars) for 
data from (a) each test subject, (b) location, and (c) indentation rate. 
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A shown by the NSSE of the simulated tissue indentation data [Fig. 4], several 
observations can be made.  

• The NSSE values, a measure of how well the experimental behavior was simulated 
with the converged nonlinear elastic material coefficients, varied among subjects, 
test sites, and indentation rates. 

• With the exception of Subjects 2b (mean NSSE ∼ 3%) and 5b (mean NSSE ∼ 1.9%), 
the mean NSSE was less than 1.5%. Thus, the soft tissues of the residual limbs of the 
majority of the tested subjects can be simulated by the James–Green–Simpson 
material model. 

• The simulation of the distal and proximal popliteal, distal medial and lateral tibial 
flares, fibular head, and medial and lateral aspects of the residual limbs consistently 
resulted in low NSSE with little variability. The soft tissue at these test sites, in 
comparison with other test sites, seems particularly suited to the James–Green–
Simpson nonlinear elastic material model. 

• The mean NSSE at indentation rates of 1, 5, and 10 mm/s was relatively constant, 
although greater variation was observed at 5 mm/s. The James–Green–Simpson 
material formulation can therefore simulate compressive force-displacement 
characteristics of residual limb soft tissues for all of the experimental indentation 
rates. 

 
Fig. 5. James–Green–Simpson material coefficients for Subject 7. 
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Fig. 6. James–Green–Simpson material coefficients for (a) 1 mm/s, (b) 5 mm/s, and (c) 10 mm/s for 
repeated trials performed 20 months apart on Subject 5. 
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In addition to the investigation of the NSSE, the corresponding material coefficients 
were also summarized for Subject 7 (Fig. 5), a representative subject in terms of NSSE. 
With the exception of the medial femoral condyle, the experimental force-displacement 
curve was not observed to “stiffen” with increased indentation rate28—as might be 
expected for a classic viscoelastic material. As such, while the estimated material coefficient 
varied with indentation rate, no consistent rate trends were observed. Similar variability in 
the estimated material coefficients was also observed between test locations. This 
variability in the converged nonlinear elastic material coefficients between sites and with 
indentation rate indicate that indentor tests and subsequent material property estimation 
is needed for each test location and loading rate of interest for accurate simulation of soft 
tissue compressive behavior. 

The material coefficients were also summarized for Subject 5, as this subject 
completed the experimental protocol twice over a 20-month interval. Changes in the 
subject's residual limb during this period necessitated the design and fabrication of a new 
test prosthesis for the latter trials. Therefore, it was not surprising that the material 
coefficients differed for the two trials [Fig. 6]. This time-dependent variability in material 
coefficients (at each of the respective indentation rates) was not consistent with the 
changes in soft tissue thickness observed over this same time period. 

The time-dependent variability in the residual limb itself is routinely observed. The 
volume of a lower extremity amputee's residual limb may vary substantially over the 
course of the day, as commonly seen by the need for addition and/or removal of stump 
socks. The residual limb soft tissues are influenced by many factors, including diet, activity 
level, and adverse medical conditions. Such variations confound attempts to assess 
material property variation with indentation rate, as the respective test protocols at the 
specific indentation rates were conducted at weekly intervals. Therefore, the variability in 
the resultant nonlinear elastic material coefficients with subject, location, and indentation 
rate preclude these coefficients from being readily extrapolated to other individuals, other 
sites, or other rates. In addition, the time dependent changes in the residual limb itself 
indicate that the respective material coefficients should perhaps also not be applied to the 
same individual some time after testing. Further testing is needed to determine the 
variability of soft tissue response to indentation with time. 

As shown in,28 the residual limb soft tissues did not consistently behave as a 
classical viscoelastic solid (i.e., more compliant at slower indentation rates), perhaps due to 
the aforementioned variability with time and the fact that the test protocol spanned a four- 
to five-week period. Therefore, as expected, the nonlinear elastic material coefficients were 
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not observed to increase with the increasing indentation rate for a given location and 
subject. 

The force-displacement data from the rate-controlled indentation tests were 
simulated using nonlinear finite-element models. Nonlinear models—by nature—are 
iterative and therefore computationally more expensive than linear models. For this study, 
each finite-element simulation required 35 time steps, and each time step required one or 
more stiffness matrix reevaluations. Due to the material and geometric nonlinearities, the 
search for a suitable (i.e., NSSE ≤ 1%) set of material coefficients required multiple 
iterations. Thus, although the material formulation was a relatively simple nonlinear model 
with only three independent coefficients, considerable calculation was required to estimate 
the nonlinear elastic material coefficients. 

The nonlinear elastic material coefficients were estimated using a manual search 
process. The material property search process may be automated to reduce user 
interaction and potentially accelerate the search. Vetrano and Silver-Thorn44,45 achieved 
some success with an automated material coefficient search algorithm (Hooke–Jeeves). 
This algorithm is simple and robust but not very efficient for this application. As the 
residual limb tissues are nonlinear and the level of nonlinearity varies for each test location 
(i.e., due to the indentation magnitude, the soft tissue thickness, and the resultant tissue 
strains), basic properties of the strain energy density function should be incorporated into 
an automated search process to maximize efficiency. 

Some commercial finite-element software packages56,57 use the experimental 
engineering stress and strain data to extract the material coefficients for a specified 
material formulation. However, these algorithms require test specimens with regular 
geometry and controlled loading (e.g., uniaxial, biaxial, simple shear). Such automated 
techniques were not amenable for the in vivo indentation data. 

There are some limitations to the modeling efforts presented. The individual soft 
tissue constituents (e.g., skin, fat and muscle) at the test location were modeled as a single, 
homogeneous, isotropic, nonlinear elastic material. The behavior of the individual 
constituents and their interaction with each other were not modeled. The James–Green–
Simpson nonlinear elastic material formulation is a phenomenological (empirical) model 
that approximates the macro-mechanical nonlinear behavior and ignores the 
microstructure and mechanisms contributing to the observed nonlinear behavior. The 
converged nonlinear elastic material coefficients are therefore not indicative of residual 
limb soft tissue physiology. (The only physical interpretation of the nonlinear elastic 
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material coefficients is that 𝐶𝐶1 provides an indication of initial soft tissue stiffness at small 
indentations, 𝐶𝐶2 indicates the relative stiffening as the indentation progresses, and 𝐶𝐶3 
reflects large strain effects.) Structural and microstructural material formulations require 
more extensive experimentation to determine the structural parameters and associated 
interactions. Such formulations also tend to require greater computational effort than 
phenomenological models. 

A potential source of error for these models was the axisymmetric approximation of 
the residual limb geometry at the respective test site and the associated loading (i.e., tissue 
indentation). Exterior (i.e., skin) and interior (i.e., bone) surface curvatures of the lower 
extremity residual limb are not axisymmetric. However, the effects of these curvatures on 
the simulated force-displacement behavior were found to be negligible.58 While the loading 
for the tissue indentation trials was approximately axisymmetric, the physiologic loading 
condition of a residual limb soft tissue in a prosthetic socket, in general, is not 
axisymmetric. Subsequent simulation of the residual limb tissues, using these 
axisymetrically derived material coefficients, subjected to more realistic multiaxial 
physiologic loading may therefore be suspect. 

The frictionless contact assumption between the indentor tip and soft tissue 
resulted in three simulation failures in 254 attempts. The soft tissue contact nodes rarely 
slipped with respect to the rigid indentor tip. Errors due to the frictionless contact 
assumption are therefore believed to be minimal. 

Finally, the nonlinear material of residual limb soft tissue was modeled by the 
James–Green–Simpson formulation, an elastic formulation. Time-dependent phenomena, 
such as creep and relaxation, as well as hysteresis during cyclic loading, have been 
observed for residual limb soft tissues.28,55 These behaviors cannot be simulated with the 
present elastic material model. Investigation of an extended form of the same nonlinear 
material formulation to include the viscoelastic properties of the soft tissue is ongoing.59 
With the addition of viscoelastic material properties, a wider range of loading spectra can 
perhaps be simulated that may further our understanding of the residual limb soft tissue 
response to compressive loading and residual limb-prosthetic socket interface 
biomechanics. 
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Appendix 

In cylindrical coordinates, one may select indexes such that 1 = radial coordinate (r), 2 = 
angular coordinate (𝜃𝜃), and 3 = axial coordinate (𝑧𝑧). Thus, for an axisymmetric problem, 
the angular displacement (𝑢𝑢2) is identically zero. In addition, the derivative of any quantity 
in angular direction vanishes (e.g., ∂(∙)/ ∂𝑋𝑋𝜃𝜃 = ∂(∙)/ ∂𝑥𝑥𝜃𝜃 = 0). 

Using the notation of Malvern [60],4. the stretch (in the Lagrangian sense) is defined 
as 

Λ(𝑖𝑖)
2 = 1 + 2𝐸𝐸(𝑖𝑖)(𝑖𝑖) 

(A1) 
 
where 𝐸𝐸(𝑖𝑖)(𝑖𝑖) refers to the diagonal (no summation) elements of Green–Lagrange finite 
strain tensor. The diagonal elements of Green–Lagrange finite strain tensor in an 
axisymmetric problem become 
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(A2) 
 
As such, the stretches in (A1) become 
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(A3) 
 
For an incompressible material 
 

𝐼𝐼3 = 𝜆𝜆1
2𝜆𝜆2

2𝜆𝜆3
2 = 1. 

(A4) 
 
As Λ2 = 𝜆𝜆2 = 1 for axisymmetric problems (i.e., zero angular displacement) 
 

𝐼𝐼3 = 𝜆𝜆𝑟𝑟
2𝜆𝜆𝑧𝑧

2 = 1 
(A5) 
 
or 
 

𝜆𝜆𝑧𝑧
2 =

1
𝜆𝜆𝑟𝑟

2 . 

(A6) 
 
Substituting Λ2 = Λ𝜃𝜃 = 𝜆𝜆2 = 1 and (A6) into the equations for the invariants of the Green–
Lagrange finite strain tensor 𝐼𝐼1 and 𝐼𝐼2 
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(A7) 
 
we find that 
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(A8) 
 
Thus, the two remaining independent invariants of Green–Lagrange strain tensor, 𝐼𝐼1 and 𝐼𝐼2 
are equivalent for an incompressible material under axisymmetric loading conditions. 

As 𝐼𝐼1 = 𝐼𝐼2, the strain energy density of the James–Green–Simpson material model [(1) in 
this paper] may be simplified to 

𝑊𝑊 = 𝐶𝐶𝐼𝐼(𝐼𝐼 − 3) + 𝐶𝐶𝐽𝐽(𝐼𝐼 − 3)2 + 𝐶𝐶𝐾𝐾(𝐼𝐼 − 3)3 
(A9) 
 
where the new material coefficients 𝐶𝐶𝐼𝐼 may be expressed in terms of the original 
coefficients 𝐶𝐶𝑖𝑖𝑖𝑖 as 
 

𝐶𝐶𝐼𝐼 = 𝐶𝐶10 + 𝐶𝐶01
𝐶𝐶𝐽𝐽 = 𝐶𝐶11 + 𝐶𝐶20
𝐶𝐶𝐾𝐾 = 𝐶𝐶30.

 

(A10) 
 
In this study, 𝐶𝐶10 = 𝐶𝐶01 = 𝐶𝐶1 (or 𝐶𝐶𝐼𝐼 = 2𝐶𝐶1)), 𝐶𝐶11 = 𝐶𝐶20 = 𝐶𝐶2 (or 𝐶𝐶𝐽𝐽 = 2𝐶𝐶2)), and 𝐶𝐶3 = 𝐶𝐶30 =
𝐶𝐶𝐾𝐾 were arbitrarily assigned. 
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