182 research outputs found
A comparative assessment of the effects of fresh and saltwater on soluble proteins and surimi made from Hypophthalmichthys molitrix
Due to the special taste of the Silver carp, the fish is not used for production of Surimi. Researchers have shown that water soluble proteins in water and brine have significant effects on the taste, flavor and odor of the Surimi produced from the fish. In this study, the effects of washing minced meat of Silver carp with fresh water and brine with 1.5 and 2.5 percent salt for 5, 10 and 15 minutes on the taste of Surimi and its shelf life cold stored for 120 days were investigated. We prepared three lots of minced meat from silver carp and each lot was washed with fresh water and brine with 1.5 and 2.5 percent salt, for 5, 10 and 15 minutes. The extracted water soluble proteins from fresh water washing were 1.3, 2.7, and 4.01 and for brine were 2, 4.2, 6.3 and 2.96 5.92 and 9 percent of the total protein of the fish for 1.5% and 2.5% salt respectively. A taste panel ranked the Surimi made from minced meat after washing with 1.5% brine for 10 minutes as the best in terms of taste, flavor and odor. We recorded a change in protein content of the Surimi made from minced meat washed with fresh water and be and stored for 120 days at -18°C, from 17.02 to 16.46, 14.73 to 13.5 and 12.03 to 11.5%, respectively. TVN for the same samples were increased from 9.76 to 13.2, 8.43 to 12.10 and 7.03 to 1 Img/100g. Changes in peroxide value were zero to 1.9, zero to 1, and zero to 0.8 Milli-equivalents/1000g. The total count of the bacteria for these Surimi samples were between 15 to zero colonies after 120 days storage at 48 C. Data from the different chemical, microbial, and sensory quality measurement were subjected to one way Anova and Ducan's multiple range test and the results showed a significant difference between the treatments at P<0.05. For production of Surimi from washing minced meat of silver carp is better to wash minced meat with 1.5% brine for 10 minutes. The Surimi's nutrition rate including: Protein 16.83%; fat 2.2%; moisture 82.65% and ash 1.5%
Beyond somatosensation: Mrgprs in mucosal tissues
Mas-related G coupled receptors (Mrgprs) are a superfamily of receptors expressed in sensory neurons that are known to transmit somatic sensations from the skin to the central nervous system. Interestingly, Mrgprs have recently been implicated in sensory and motor functions of mucosal-associated neuronal circuits. The gastrointestinal and pulmonary tracts are constantly exposed to noxious stimuli. Therefore, it is likely that neuronal Mrgpr signaling pathways in mucosal tissues, akin to their family members expressed in the skin, might relay messages that alert the host when mucosal tissues are affected by damaging signals. Further, Mrgprs have been proposed to mediate the cross-talk between sensory neurons and immune cells that promotes host-protective functions at barrier sites. Although the mechanisms by which Mrgprs are activated in mucosal tissues are not completely understood, these exciting studies implicate Mrgprs as potential therapeutic targets for conditions affecting the intestinal and airway mucosa. This review will highlight the central role of Mrgpr signaling pathways in the regulation of homeostasis at mucosal tissues
A user-friendly and accurate machine learning tool for the evaluation of the worldwide yearly photovoltaic electricity production
While traditional methods for modelling the thermal and electrical behaviour of photovoltaic (PV) modules rely on analytical and empirical techniques, machine learning is gaining interest as a way to reduce the time, expertise, and tools required by designers or experts while maintaining high accuracy and reliability. This research presents a data-driven machine learning tool based on artificial neural networks (ANNs) that can forecast yearly PV electricity directly at the optimal PV inclination angle without geographic restrictions and is valid for a wide range of electrical characteristics of PV modules. Additionally, empirical correlations were developed to easily determine the optimal PV inclination angle worldwide. The ANN algorithm, developed in Matlab, systematically and quantitatively summarizes the behaviour of eight PV modules in 48 worldwide climatic conditions. The algorithm's applicability and robustness were proven by considering two different PV modules in the same 48 locations. Yearly climatic variables and electrical/thermal PV module parameters serve as input training data. The yearly PV electricity is derived using dynamic simulations in the TRNSYS environment, which is a simulation program primarily and extensively used in the fields of renewable energy engineering and building simulation for passive as well as active solar design. Multiple performance metrics validate that the ANN-based machine learning tool demonstrates high reliability and accuracy in the PV energy production forecasting for all weather conditions and PV module characteristics. In particular, by using 20 neurons, the highest value of R-square of 0.9797 and the lowest values of the root mean square error and coefficient of variance of 14.67 kWh and 3.8%, respectively, were obtained in the training phase. This high accuracy was confirmed in the ANN validation phase considering other PV modules. An R-square of 0.9218 and values of the root mean square error and coefficient of variance of 31.95 kWh and 7.8%, respectively, were obtained. The results demonstrate the algorithm's vast potential to enhance the worldwide diffusion and economic growth of solar energy, aligned with the seventh sustainable development goal
Development and optimisation of treatment technologies for environmental pollution control
A number of sustainable and economically viable treatment methodologies have been developed and optimised to combat environmental pollution problems associated with the diversity and scattered nature of industries in Pakistan. The use of both electro-precipitation and electro-oxidation processes are shown to lead to the removal of dyes from textile effluent streams originating from various operations. The use of the electro-precipitation process, however, leads to a secondary disposal problem because sludge produced has to be disposed of safely. The use of an electrooxidation process does not produce sludge but is unable to remove some of the organic impurities from industrial textile effluent. Both processes do, however, result in colour removal from dye effluents with the degradation of dyes during electro-oxidation proceeding through the formation of different intermediate species before mineralization leading to complete mineralization in 30-40 minutes. Ames tests confirm that the treated effluent streams from both electro-precipitation and electro-oxidation processes are non-mutagenic. The electro-Precipitation process with mild steel anodes is also be used for the treatment of leather effluent streams to remove chromium by producing a mixed Cr(III) / Fe(III) hydroxide sludge. The same treatment process was successfully used for the simultaneous removal of dyes and chromium from mixed textile/leather effluent streams. The electro-precipitation process developed has been successfully tested on pilot scale at a textile mill in Faisalabad, Pakistan. A number of transition metal supported catalysts were shown to be ineffective in the oxidation of volatile organic compounds. For this reason a method of preparing platinum group metal catalysts on inert supports at low temperatures was developed and used to oxidise toluene, as an indicator of volatile organic compounds. The preferred catalyst support is y-A1203 which can be in the form of spheres or washcoated monoliths. In the case of y-A1203 spheres and the y-A1203 washcoated monolith complete oxidation of toluene was achieved at the relatively low temperatures of 236 and 2680C. A number of novel room temperature ionic liquids (RTILs) were synthesised, characterised and their potential application for selective extraction of copper from industrial wastes is also reported. The solubility studies of different metal oxides in the RTIL, 1-(2-cyanoethyl)-3-methylimidazolium bromide, show that it can be used for the selective extraction of copper from industrial waste samples containing other metal oxides. This RTIL has the ability to selectively dissolve, copper, copper oxide and copper sulfide when the reaction is carried out in the presence of water.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Nano-refrigerants and nano-lubricants in refrigeration : synthesis, mechanisms, applications, and challenges
Addressing global energy security and environmental concerns, the utilization of nano-refrigerants and nano-lubricants has emerged as an innovative path for enhancing heat transfer. This research focuses on enhancing the thermophysical properties, heat transfer efficiency, and tribological characteristics of nanofluids—nanoparticles dispersed in refrigerants or lubricants. These nanofluids have demonstrated significant potential in applications such as cooling, air conditioning systems, and heat transfer equipment including pumps and pipes. A comprehensive understanding of parameters like thermal conductivity, viscosity, pressure drop, pumping power, and energy performance is delivered, with the aim of enhancing the overall efficiency of refrigeration systems, particularly the coefficient of performance (COP). Additionally, the review covers existing research on flow and pool boiling heat transfer, nano-lubricant tribological enhancement, and nano-refrigerant condensation. The study also addresses the challenges associated with the use of nano-refrigerants and nano-lubricants and offers a prospective outlook for their usage. These novel nanofluids are anticipated to emerge as effective solutions for increasing the COP and reducing energy consumption in the industrial sector, thus extending beyond the scope of previous efforts in this field. This review could serve as a valuable resource for a broad audience interested in this novel approach to energy efficiency
On Research Challenges in Hybrid Medium Access Control Protocols for IEEE 802.15.6 WBANs
IEEE 802.15.6 is a Wireless Body Area Network
(WBAN) standard proposed to facilitate the exponentially growing interest in the field of health monitoring. This standard is flexible and outlines multiple basic Medium Access Control (MAC) protocols that are contention based and collision free to meet the WBAN Quality of Service (QoS) challenges. Typically, current research trends in WBAN MAC focus on designing a hybrid MAC that is a combination of basic MAC protocols. In this paper, we provide a first detailed survey of existing hybrid MAC protocols based on IEEE 802.15.6 which would be useful for the related research community. Firstly, the paper lists the design challenges of a WBAN MAC. Secondly, it highlights the significance of hybrid MAC protocols in meeting the design challenges while comparing them to standard MAC protocols. Thirdly, a critical and thorough comparison of existing hybrid MAC protocols is presented in terms of network QoS and WBAN specific parameters. Lastly, we identify key open research areas
that are often neglected in hybrid MAC design and further
propose some possible directions for future research
CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer
The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed. © Copyright © 2020 Azangou-Khyavy, Ghasemi, Khanali, Boroomand-Saboor, Jamalkhah, Soleimani and Kiani
Influence of injection pressure on the dual-fuel mode in CI engines fueled with blends of ethanol and tamanu biodiesel
DATA AVAILABILITY : The data used to support the findings of this study are included within the article.The acceleration of global warming is primarily attributable to nonrenewable energy sources such as conventional fossil fuels. The primary source of energy for the automobile sector is petroleum products. Petroleum fuel is depleting daily, and its use produces a significant amount of greenhouse emissions. Biofuels would be a viable alternative to petroleum fuels, but a redesign of the engine would be required for complete substitution. The use of CNG in SI engines is not new, but it has not yet been implemented in CI engines. This is due to the fuel having a greater octane rating. The sole use of CNG in a CI engine results in knocking and excessive vibration. This study utilizes CNG under dual-fuel conditions when delivered through the intake manifold. In a dual-fuel mode, compressed natural gas (CNG) is utilized as the secondary fuel and a blend of 90% tamanu methyl ester and 10% ethanol (TMEE10) is used as the primary fuel. The injection pressure (IP) of the primary fuel changes between 200 and 240 bar, while the CNG induction rate is kept constant at 0.17 kg/h. The main combustion process is governed by the injection pressure of the pilot fuel. It could be affecting factors such as the vaporization characteristics of the fuel, the homogeneity of the mixture, and the ignition delay. Originally, tamanu methyl ester (TME) and diesel were used as base fuels in the investigation. As a result of its inherent oxygen content, TME emits more NOx than diesel. The addition of 10% ethanol to TME (TMEE10) marginally reduces NOx emissions in a CI mode because of its high latent heat of vaporization characteristics. Under peak load conditions, NOx emissions of TMEE10 are 6.2% lower than those of neat TME in the CI mode. Furthermore, the experiment was conducted using TMEE10 as the primary fuel and CNG as the secondary fuel. In the dual-fuel mode, the TMEE10 blend showed higher combustion, resulting in an increase in performance and a significant decrease in emission characteristics. As a result of the CNG’s high-energy value and rapid burning rate, the brake thermal efficiency (BTE) of TMEE10 improves to 29.09% compared to 27.09% for neat TME. In the dual-fuel mode of TMEE10 with 20.2% CNG energy sharing, the greatest reduction in fuel consumption was 2.9%. TMEE10 with CNG induction emits 7.8%, 12.5%, and 15.5% less HC, CO, and smoke, respectively, than TME operation.http://www.hindawi.com/journals/ijce/am2023Mechanical and Aeronautical Engineerin
Collection of information about sturgeon fish processing and processed products
Sturgeon is one of the most important fish. The important of these fish is related to the it’s caviar and meat. Addition of caviar and meat, other products which are produced from the other part of the fish like head, viscera, skin are also important. The remaining residue and waste processing sturgeon has been about 50 percent value-added capabilities into side products such as skin leather, glue the swim bladder, internal organs and the sauce ,as well as the production of medical products such as oil, protein, vitamins and health products such as cartilage capsules in cosmetic creams caviar pulp is , examples of these products are produced in other countries and industries for Sale Collection data from the processing view from the sturgeon fishes in this report has been tried and amount of data also collected, this report has been tried and good information’s also collected. This report is in privilege of national fish processing center a branch of fishery research institute of Iran, the data contains as ,Sturgeon fish meat processing, Sturgeon fish by-products, Sturgeon caviar processing
- …