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a b s t r a c t

While traditional methods for modelling the thermal and electrical behaviour of photovoltaic (PV)
modules rely on analytical and empirical techniques, machine learning is gaining interest as a way to
reduce the time, expertise, and tools required by designers or experts while maintaining high accuracy
and reliability. This research presents a data-driven machine learning tool based on artificial neural
networks (ANNs) that can forecast yearly PV electricity directly at the optimal PV inclination angle
without geographic restrictions and is valid for a wide range of electrical characteristics of PV modules.
Additionally, empirical correlations were developed to easily determine the optimal PV inclination an-
gle worldwide. The ANN algorithm, developed in Matlab, systematically and quantitatively summarizes
the behaviour of eight PV modules in 48 worldwide climatic conditions. The algorithm’s applicability
and robustness were proven by considering two different PV modules in the same 48 locations.
Yearly climatic variables and electrical/thermal PV module parameters serve as input training data.
The yearly PV electricity is derived using dynamic simulations in the TRNSYS environment, which is a
simulation program primarily and extensively used in the fields of renewable energy engineering and
building simulation for passive as well as active solar design. Multiple performance metrics validate
that the ANN-based machine learning tool demonstrates high reliability and accuracy in the PV energy
production forecasting for all weather conditions and PV module characteristics. In particular, by using
20 neurons, the highest value of R-square of 0.9797 and the lowest values of the root mean square
error and coefficient of variance of 14.67 kWh and 3.8%, respectively, were obtained in the training
phase. This high accuracy was confirmed in the ANN validation phase considering other PV modules.
An R-square of 0.9218 and values of the root mean square error and coefficient of variance of 31.95
kWh and 7.8%, respectively, were obtained.

The results demonstrate the algorithm’s vast potential to enhance the worldwide diffusion and
economic growth of solar energy, aligned with the seventh sustainable development goal.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Context

Clean or renewable energies are those that can be gener-
ted simultaneously with their consumption. In contrast to non-
enewable sources such as oil, coal, and gas, renewable energy
ources (RESs) are clean and inexhaustible. They offer alternative
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energy options to traditional fossil fuels, with many of them
not releasing harmful substances into the atmosphere that could
negatively impact the climate. Despite their potential benefits,
renewable sources are characterized by irregularity, which poses
a significant challenge at the industrial level. However, given
their potential to combat climate change, the promotion of RESs
has become a critical and pressing issue. Consequently, several
directives have been issued to promote the use of RESs and
decrease the European Union’s (EU’s) reliance on imported fossil
fuels.
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At a global level, there is the agreement, called the Kyoto
rotocol, signed in December 1997 during the Conference of
he Parties in Kyoto (COP3) with objectives of improvement of
nergy efficiency, promoting sustainable agriculture and reduc-
ng emissions in the transport sector (Babiker et al., 2000). The
ight against climate change, which is the most important cur-
ent problem in the environmental field, forms the core of the
greement. The general objectives of the Kyoto Protocol are the
mprovement of energy efficiency, promotion of sustainable agri-
ulture, and reduction of emissions in the transport sector. In
articular, the Kyoto Protocol has its main objective of reducing
reenhouse gas emissions by all signatory countries, which also
ave the task of drawing up a national system of annual moni-
oring of greenhouse gas emissions. Subsequently, in December
015, the first global climate agreement was adopted by 195
ountries at the Paris Climate Conference (COP21). The main
oal of this agreement is to keep the global average tempera-
ure increase below 2 ◦C above pre-industrial levels. In addition,
he signatory countries submitted national global climate action
lans, which, however, were not sufficient to achieve the goal set.
he goal can be achieved in the future with the commitment of
he countries, which are obliged to meet every 5 years to discuss
limate actions by drafting national plans to achieve the goal.
ollowing the U.S. Green New Deal (Galvin and Healy, 2020) —
package of measures proposed, in 2019, by the U.S. Legislature
o address climate change — Europe has its own ‘‘green deal’’.
n January 14, 2020, the EU Parliament approved a massive
nvestment plan aimed at transforming Europe into a ‘‘zero cli-
ate impact’’ country by 2050 (Laurent, 2020). The European
reen New Deal aims to decarbonize the energy sector across
he continent, renovate buildings, support industry in a green
conomy process and make the transport system cleaner. All EU
ountries will receive a financial aid package to kick-start the
ransition: total investments will amount to around 1000 billion
uros over ten years. In addition, several funds will be activated,
hich are necessary for member states to start the economic,
roductive, and labour reconversion.
RESs such as hydroelectric energy, solar energy, wind energy,

arine or tidal energy and geothermal energy are commonly
onsidered eco-friendly energies. In particular, solar energy is
lean, renewable thermal or electrical energy produced by di-
ectly harnessing the energy radiated from the Sun to the Earth.
ndeed, the amount of solar energy that reaches the Earth’s soil is
normous, about ten thousand times greater than all the energy
sed by humanity as a whole. Photovoltaic (PV) modules use light
nergy (photons) from the sun to generate electricity through the
V effect. Each module is evaluated by its DC power output under
tandard test conditions (STC). The power typically ranges from
00 W to 365 W. The efficiency of a module determines the area
f a module given the same power rating: a 230 W module with
% efficiency has twice the area of a 230 W module with 16%
fficiency. Some commercially available solar modules exceed
4% efficiency. A PV system typically includes an array of PV mod-
les, an inverter, an energy storage battery, a charge controller,
nterconnect wiring, circuit breakers, fuses, disconnect switches,
oltage meters, and optionally a solar tracking mechanism. The
quipment is carefully selected to optimize production, and en-
rgy storage, and reduce power loss during power transmission
nd DC to AC conversion. The efficiency of solar panels can be
alculated based on the panels’ MPP (maximum power point)
alue. Inverters convert DC power to AC power by performing
he maximum power point tracking (MPPT) process: the solar
nverter samples the output power (IV curve) from the solar cell
nd applies the appropriate resistance (load) to the solar cells to
btain maximum energy. A comprehensive review of PV theory

nd applications was developed by Tiwari et al. (2011), while a
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simple explicit model for determining the I–V characteristic of
different PV module technologies was developed by Boutana et al.
(2017).

Tools to predict PV module energy production under real
conditions are essential for selecting different PV modules and
suitable sites. Despite the availability of many PV models, the
development of a method to evaluate the PV energy performance
shared by researchers is still an open problem. Previous models
can be classified into physical-based models, based on the full I–V
curve, or empirical-based models solely based on the maximum
power point (MPP) (de la Parra et al., 2017). Usually, the physical
models are more complex and used by researchers, while the
empirical ones are easier, quicker, require few input data, and
are more indicated for designers or policy-makers. The empirical
methods are based on fitting equations that summarize the PV be-
haviour. A recent review summarized the most known algebraic
forms that express the temperature dependence of solar electrical
efficiency, solar power, and power/energy rating methods (Sko-
plaki and Palyvos, 2009). These methods are characterized by a
black-box approach since the PV efficiency or electrical power
as a function of cell/module operating temperature and essential
environmental variables are obtained by means of linear or non-
linear multivariable regression equations. According to de la Parra
et al. (2017), empirical models with just three independent pa-
rameters suffice to accurately describe the relationship between
PV array performance and operating conditions. Also, Artificial
neural networks (ANNs) fall into this class of models since, after
a training process, they learn the PV response as a function of key
input parameters with a black-box approach. They can be trained
to forecast the PV output for any weather condition and PV cell
type with a black-box approach. Recently, ANN or artificial intelli-
gence approaches are, in general, becoming common in different
energy and climate fields, such as smart energy management (Li
et al., 2023), the thermal analysis of green roofs (Mazzeo et al.,
2023), precipitation rate predictions (Ghazikhani et al., 2022), the
smart framework for supplying biogas energy (Shahsavar et al.,
2021), the design of clean energy community with hybrid renew-
able systems (Mazzeo et al., 2021), the forecasting of the electrical
energy demand for an online monitoring system (Ghadami et al.,
2021), a novel regenerator design for a caloric cycle (Kang and
Elbel, 2023), the prediction of the specific heat capacity of hybrid
nanofluid (Seawram et al., 2022), selecting the most appropriate
locations of the offshore wind farms (Marin et al., 2022), load
and price forecasting in power systems (Alhendi et al., 2023),
predicting the performance of solar collectors (Du et al., 2022)
and proton exchange membrane fuel cell power and voltage
prediction (Wilberforce and Biswas, 2022).

With large amounts of data available from solar stations,
different artificial intelligence techniques are used to calculate,
predict and forecast solar radiation energy (Sudharshan et al.,
2022). Karamirad et al. (2013) adopted ANNs to predict PV panel
behaviours under realistic weather conditions, comparing the
results with experimental data and analytical four and five-
parameter models of PV modules. They optimized the topology
of a multilayer perceptron ANN model in which the input layer
consists of three neurons (total irradiation, air temperature, and
module voltage), and the output layer contains one neuron (mod-
ule current). According to Ogliari et al. deterministic models
for the day ahead PV output power forecast, based on electric
equivalent circuits with three and five parameters, were com-
pared with a hybrid method based on ANNs by employing real
data measured for one year in an existing PV plant located at
SolarTechlab in Milan (Ogliari et al., 2017). The proposed ANN
model can be used to test the maximum power point tracking
under real weather conditions. Ye et al. designed a five-layer

multi-perceptron ANN, which includes one input layer, three
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idden layers, and one output layer, for the estimation of the
ower output of a photovoltaic panel (Ye et al., 2022). All the
revious ANNs for PV forecasting are not a general value and
ere not tested for other localities, namely climatic conditions
nd PV module characteristics. Only very recently, an hourly ANN
or the forecasting of PV electricity at any latitude using ANNs was
roposed (Matera et al., 2023a); however, a similar approach was
ever applied from a yearly point of view. Yearly analysis is very
mportant in the design phase of PV systems both in terms of size
nd in terms of the best site selection. As far as the authors are
ware, no previous work has used historical global climate data
o accurately predict annual PV energy for a very wide range of
ariations in key PV electrical and thermal parameters.
For the first time, this paper aims to overcome the issues of

lassical approaches for the determination of PV cell performance
sing complex I–V curve modelling by proposing an easy, re-
iable, quick, and accurate data-driven machine learning model
mploying the ANN model for the direct calculation of the yearly
nergy produced by the PV system with any electrical charac-
eristics located in any worldwide locality. The ANN algorithm
s very useful for designers and is proposed as an alternative to
xisting global simple energy methods or empirical correlations.
he yearly input and output data used to train the ANN are
erived from hourly simulated data summarized in yearly terms.
he training database was obtained with an extensive parametric
ynamic simulation of eight different PV modules located in
8 worldwide localities. The other two modules were used to
evelop a verification test of the accuracy of the ANN tool in
he calculation of the yearly PV electricity generated in different
orld climates.
The development of this ANN will allow researchers and de-

igners to directly predict yearly PV energy by using as inputs
nly some yearly weather variables and electrical and thermal
haracteristics of the PV module and without solving any electric
ircuit and, hence, non-linear equations to extract parameters
n the reference conditions. In this way, no hourly simulation is
equired and the result in terms of annual PV energy will be very
lose to the yearly value that would have been obtained from an
ourly simulation.
The rest of the paper is structured as follows. Section 2 de-

cribes the ANN forecasting algorithm, accuracy metrics and PV
odels used. Section 3 presents all electrical and thermal PV
haracteristics of the module, weather data of the 48 localities
onsidered, optimization of the inclination angle worldwide and
nput and outputs used in the ANN training process. Simula-
ion results and the calculated accuracy metrics are presented
n Section 4 for the ANN training and validation process. The
inal remarks, conclusions, limitations and future outlook are
resented in Section 5.

. Materials and methods

A forecasting ANN machine learning model for the yearly PV
lectricity estimation was developed by using as training data
early input and output data summarizing hourly weather vari-
bles and electrical power deriving from dynamic simulations of
en PV modules located in 48 worldwide localities. The proposed
odel ANN accuracy was verified on 2 further PV modules. In the

ollowing sections, the mathematical models used in this research
ork for the ANN training and hourly PV simulation are analyzed.

.1. Artificial neural networks

ANNs are machine learning algorithms inspired by the brain’s
iological functioning, simulating the behaviour of neurons. ANNs
6269
Fig. 1. ANN graphical representation.

re utilized for solving artificial intelligence engineering prob-
ems (Ahmad et al., 2014; Cong et al., 2013; Ghritlahre and
rasad, 2018; Liu et al., 2021; Hoang et al., 2021), and other
ectors’ dilemmas such as biomedicine and data mining (Wang
nd Huang, 2021; Gong, 2021).
ANNs are mathematical models capable of processing the in-

oming information at the ANN nodes, called neurons. ANN con-
ists of: (i) neural nodes connected through links; (ii) weights
ssociated with the connections; and (iii) activation functions. In
articular, the signals to be processed pass between the various
eurons through communication links to which a weight is as-
ociated, which usually multiplies the transmitted signal. Each
euron generates the output by applying an activation function
o the weighted sum of the inputs. The state of activation of
ach neuron depends on the input of the neuron itself. The
eurons use the activation function to create the signal that
s subsequently sent via the communication links to the other
eurons. Graphically, the neuron is represented with a circle;
nstead, the connections between the neurons are represented
ith oriented arrows indicating the direction of the information

low (see Fig. 1).
The artificial neuron is characterized by a set of synapses

connections), and each synapse is represented by a weight w,
hich can be positive or negative. The initial operation of the
rtificial neuron is to calculate an activation function f (A) by
arrying out a weighted sum of the input signals xj with the
elative weights wij. The neuron excitation threshold value si,
hich increases or decreases the input of the activation function
ccording to its positivity or negativity, must be subtracted from
his weighted sum (see Eq. (1)).

(x) = f (A) = f

⎛⎝ n∑
j=1

xj wij − si

⎞⎠ (1)

here y(x) represents the output of the neuron that, in turn,
epresents the input for the other neurons.

The type of activation function used determines the neuron’s
esponse. In the literature, different types of activation functions
re employed. The most used are:

1. Step activation function (Heaviside function)
The step activation function f (A) of Eq. (2) assumes value
1 if the weighted sum is greater than the threshold value
s; otherwise, it assumes value 0.

f (A) =

{
1 if A ≥ s

(2)

0 else
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Fig. 2. Most employed activation functions.
2. Sign step activation function
The sign activation function of Eq. (3) assumes value 1 if it
is greater than the threshold value, otherwise, it assumes
value −1.

f (A) =

{
1 if A ≥ s
−1 else

(3)

3. Continuous linear activation function
The continuous linear activation function of Eq. (4) is di-
rectly proportional to the weighted sum of the input sig-
nals. When ε = 1, f (A) is equal to this weighted sum.

f (A) = εA (4)

The previous activation functions are all continuous. This
allows the transmission of signals of gradual intensity and
makes them similar to biological neurons. In addition,
there are also widely used non-linear continuous activation
functions.

4. Binary sigmoidal activation function
The binary sigmoidal activation function of Eq. (5) is an
increasing function and varies in the interval [0, 1].

f (A) =
1

1 + e−εA (5)

where ε indicates the slope of the function. When ε = 1
the Log-sigmoid activation function is obtained.

5. Bipolar sigmoidal activation function
The bipolar sigmoidal activation function of Eq. (6) varies
in the interval [1, −1] and uses the hyperbolic tangent:

f (A) = tanh (εA) (6)

where ε represents the slope of the function. When ε = 1,
the hyperbolic tangent sigmoid transfer function of Eq. (7)
is obtained.

f (A) =
2

− 1 (7)

1 + e−2A

6270
Fig. 2 shows all the activation functions described.
Different ANN architecture types are available based on the

number of input and output neurons and based on their con-
nection. The neurons are organized in layers. In particular, neu-
rons belonging to the same layer present similar behaviour. It
is necessary to mention that the input nodes are not considered
layers since they are not involved in processing. According to Kim
(2017), the ANN can be classified according to its architecture in:
(i) single-layer feedforward ANNs, composed of a layer of input
neurons and a layer of output neurons, in which the propaga-
tion of the signal occurs only in one direction, from the input
layer to the output layer and, therefore, it is strongly acyclic
or feedforward; (ii) multilayer feedforward ANNs, characterized
by the presence of one or more layers of hidden nodes (hidden
layers) placed between input nodes and output nodes, in which
the operation takes place only in one direction from input to
output and the final efficiency of the model is greater than the
single-layer ANN; and (iii) recurrent ANNs, characterized by at
least one feedback or a counter-reaction cycle, in which there is
a level of neurons that sends the output signals back to the input
and the learning capacity is enhanced.

To build an effective ANN model, it is necessary to carry out an
ANN training phase in which the model receives a series of input
data, apparently unrelated to each other, and a series of outputs,
to learn the relationship between input and output. These data
are numerically or experimentally analyzed and elaborated by
experts and the data produced constitute the model outputs.

In the training phase, the ANN learns the relationships existing
between the inputs, which are the data collected, and the outputs,
which are the evaluations made by the experts. The training
phase aims to provide an output solution even when different
input data are provided. In particular, the ANN training phase can
be based on three different algorithms: supervised, unsupervised,
and reinforcement. Supervised learning is used to solve classifi-
cation and regression problems, and the objective is to learn the
relationship between inputs and outputs given as training data.
Then the ANN generalizes this relationship by processing correct
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utputs even when it receives different data inputs. In particular,
he ANN increases the weights that provide a correct solution and
ecreases those that provide an incorrect solution.
The validation phase represents the last step and aims to

alidate the final model using input data different from those
sed in the training phase to verify that the ANN has learned
o generalize the model. If the verification is not satisfied, it is
ecessary to return to the training phase, while if the solution
rovided by the ANN is compatible with that provided by experts,
he model is used with various hardware and software. The ANN
alidation phase quickly provides the results obtained with the
ew data, even if the ANN training phase was slow.
Several ANN learning methods were developed to speed up

he learning process. The most used training algorithms by an
NN are the Error back-propagation algorithm and the Leve-
berg–Marquardt algorithm. The first one is a decreasing gra-
ient method that optimizes the value of the weights minimiz-
ng the total square error between the ANN output (output)
nd the desired output (target) (Kim, 2017). The Levenberg–
arquardt algorithm is widely used in ANNs because it is the
ost stable and fastest method in finding the solution, while the
ethod of back-propagation of the error is valid in the case of
NNs composed of a large number of hidden layers and neu-
ons. The Levenberg–Marquardt algorithm refers to the Newton
pproximation method and the Hessian matrix to assign values
o weights (Levenberg-Marquardt backpropagation; Hagan et al.,
996; Hagan and Menhaj, 1994). It is based on both the Newton
ethod and the gradient descent method and is an iterative

egression technique used to solve multi-variable nonlinear prob-
ems. To better understand the Levenberg–Marquardt algorithm,
he Descending gradient and Newton methods underlying this
lgorithm are summarily described.

• In the descending gradient method, the weights w are
hanged at step k + 1 using Eq. (8).

k+1 = wk − αgk (8)

in which the constant α is called the learning rate and g is the
gradient with a negative sign, which is the first derivative of
the function sum of the square of the errors. The problem with
this method is the difficulty of choosing the learning rate α,
rom which the speed with which the function converges to the
inimum strongly depends.
• In the Newton method, the weights w are updated at step

k + 1 with Eq. (9):

wk+1 = wk − H−1
k gk (9)

in which H is the Hessian matrix of the second derivatives of the
sum function of the quadratic error with respect to the weights.
The introduction of the Hessian matrix allows the learning rate
α to be adjusted at each step k, while α is fixed in the previ-
ous method. To calculate the Hessian matrix, the Gauss–Newton
method is used, which modifies the weights w at step k+ 1 with
Eq. (10).

wk+1 = wk −
(
JTk Jk

)−1
Jkek (10)

where JT is the transposed Jacobian matrix which approximates
the Hessian matrix using the prime derivatives and not the sec-
ondary derivatives, so the Hessian matrix is written via the Jaco-
bian matrix as:

Hk = JTk Jk (11)

while the gradient g is:

g = JT e (12)

where e is the ANN error vector.
6271
In this way, the Gauss–Newton method solves the problem
of slowness in finding the minimum of the sum function of the
square of the errors. However, in the case of complex problems
may diverge from the solution. Instead, the Levenberg–Marquardt
method modifies the weights w at step k+ 1 with the equation:

wk+1 = wk −
(
JTk Jk + µI

)−1
Jkek (13)

Compared to the Gauss–Newton method, this method intro-
duces the parameter µ, called the damping coefficient, and the
identity matrix I . The damping coefficient is introduced to pre-
vent the algorithm from diverging from the minimum error func-
tion. Parameter µ varies according to the following criteria: is
reduced when a step in the algorithm leads to a better value
of the error function, such that convergence to the minimum
value is accelerated; is increased when the value of the error
function moves away from the minimum so that the variation of
the weights is reduced to find a better value of the error function.
The iterative Levenberg–Marquardt algorithm steps used during
the ANN training are: (i) starting the ANN training with random
values of the weights wk; (ii) calculation of the errors, sum
function of the square of the errors and Jacobian matrix; (iii)
modification of the values of the weights wk using a random
value of the damping parameter µ; (iv) recalculation of the errors
E and sum function of the square of the errors with the new
values of the weights; (v) if the error is decreased (Ek−1 < Ek),
then the damping parameter µ is divided by 10 such that the
speed of convergence is increased, while if the error has increased
(Ek−1 > Ek), then the damping parameter µ is multiplied by 10
to decrease the speed of convergence; (vi) return to step (ii). The
epochs indicate the number of times the ANN is trained with the
training set. The training algorithm is interrupted when the sum
function of the square of the errors reaches a minimum value
set as a threshold or when this function starts to increase on the
percentage of data of the ‘‘validation test’’.

2.1.1. Advantages and limitations of artificial neural networks
The ANN model presents a series of characteristics that allows

their use in different areas. This model presents three fundamen-
tal properties that are: flexibility, robustness, and generalization.
These features make the model resistant, i.e., able to provide an
answer even if some connections are eliminated or if there is
noise; moreover, they make it flexible, i.e. able to be used for
different objectives, and general as once trained it can provide
a correct answer in output even if new data are inserted in input.

Therefore, ANNs have several advantages:

- They work in parallel, which allows them to process a mul-
titude of data in a short amount of time. From this comes a
good tolerance to failures and noise working in parallel, the
ANN can provide an adequate response even if some units
do not work well or if the inputs are inaccurate, however
decreasing the performance.

- The ANN can adapt to any changes as it learns autonomously
through experience and training.

- Data processing is distributed in such a way that many
elements work on the same task.

The ANN model also has some flaws:

- It works in a black-box approach, i.e. it is not possible to
understand the method used by the model to arrive at
the exact output. It receives the data in input and pro-
vides in the output the correct solution but does not allow
the examination of the various stages of elaboration of the
process.
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- An initial training phase is necessary to fix the weights of
the neurons, and this requires time, attention and a good
experience as it is necessary to provide the model with a
lot of input data.

- The solutions provided in the output are not completely
correct but have a margin of error.

.1.2. Implementation of artificial neural networks in Matlab envi-
onment

The Neural net fitting tool of Matlab software was used for the
NN design (Neural net fitting tool). The classical steps to create
n ANN are:

1. ANN training data collection and importation: collection of
the model training input and output data and other input
data to use the created ANN;

2. ANN creation and configuration: choice of the number of
hidden layers and neurons;

3. ANN parameters initialization: initialization of the weights
and biases;

4. ANN training, testing, and validation: the dataset is ran-
domly divided into three groups so that, usually, 70% of
the data are used for the ANN training, 15% of the data for
the ANN testing, and the remaining 15% for the data for
the ANN validation; for a resulting low accuracy, the ANN
can be re-trained by varying the number of neurons or by
importing a larger dataset;

5. ANN application: use of the ANN created to test its accuracy
for new dataset considering accuracy metrics.

In this study, a feed-forward ANN with one hidden layer
ith a sigmoidal activation function and an output layer with a

inear activation function was considered. The training algorithm
mployed is the Levenberg–Marquardt backward propagation al-
orithm.
Typically, using a higher number of neurons and layers re-

uires more computation, and time and tends to overuse data but
llows the ANN to solve more complex problems. By increasing
he number of neurons present in the hidden layer, a risk of
dapting the ANN in a perfect way to the data used (overfitting),
nd losing the capacity of ANN generalization can be produced.
n other words, a high number of neurons allows the resolution
f a complex problem optimally, but there is the risk of creating
n ANN suitable only for the data used and not a general ANN
hat can also be used with different data. One of the main goals
f ANN creation is the design of the ANN architecture. For this
eason, the ANN was trained by varying the number of neurons
rom 2 to 20 with a step of 2 neurons.

The training stops automatically when the generalization stops
mproving, as indicated by an increase in the mean square error
MSE) of the validation samples. The most important parameters
re the performance, the magnitude of the performance gradient,
nd the number of validation checks. In particular, the latter two
re used to terminate the ANN training. The value of the gradient
ecomes very small as the training reaches the minimum MSE.
he training is terminated when the magnitude of the gradient
s less than 1 × 10−7. The validation checks number represents
he number of subsequent iterations so that performance does
ot decrease; by default, this number is set to six. In addition,
he training process is stopped when the error rate of untrained
validation) data continuously increases for more than six epochs.
lso the damping parameter µ of the Levenberg–Marquardt algo-
ithm is monitored during the training process. At each iteration,
he value of µ guides the optimization process since: when the
rror decreases quickly, then a smaller value of µ is used; on the
ontrary, when the decrease of the error is insufficient, then it is
ecessary to increase the µ value. In general, µ is decreased with
6272
ach successful iteration, i.e., when the performance function
ecreases and is increased only when an iteration would improve
he performance function. In this way, the performance function
s always reduced with each iteration.

The overfitting can be observed when the error starts to in-
rease on the validation dataset. The training process stops after
ix consecutive increases in the validation error, and the best
erformance is taken in the epoch with the lowest validation
ataset error. In particular, the performance plot can be consid-
red valid only if the final mean square error is small, the error
f the testing dataset and the error of the validation dataset have
imilar characteristics, or no significant iterations occurred at the
ime when the validation performance reached the limit.

Usually, the validation and testing curves by increasing the
pochs are very similar. When the test curve increases signifi-
antly before the validation curve increases, it means that over-
itting of the data occurred and, therefore, the number of neurons
hould be decreased. Another graph to visualize the training
rocess is the error histogram which shows the ANN error dis-
ribution. It indicates the outliers, which are data where the fit
s significantly worse than in most of the data. Finally, the data
hould fall along a 45◦ inclined line, where the ANN outputs are
qual to the targets, for a perfect regression plot between the ANN
utput and target for training, testing, and validation datasets.

.1.3. Artificial neural network accuracy and validation
The number of neurons is chosen based on some accuracy

etrics to optimize the ANN reliability and accuracy. Further-
ore, the same metrics can be used to validate the ANN when

urther input datasets, external to the training dataset, are em-
loyed to determine the output.
The most common metrics are reported in Table 1 (Matera

t al., 2023a; Elsheikh et al., 2019), where ti, tm, tmax and tmin
re the ith, mean, maximum and minimum values of the target
utput obtained from the TRNSYS simulations, yi and ym are the
th and mean values of the output predicted by the ANN and N is
he total number of comparisons.

Additional accuracy metrics are used to evaluate ANN accu-
acy:

• the minimum Emin, maximum Emax, mean Em and standard
eviation Esd values of the error, the difference between the target
and output y.

Emin = min (ti − yi) ;

Emax = max (ti − yi) ;

Em =

∑
(ti − yi)
N

;

Esd =

√∑
(Ei − Em)2

N

(14)

Finally, Pearson’s correlation coefficient ρXY , defined as the
ovariance of input X and output Y variables divided by the
roduct of their standard deviations σX and σY , measures their
inear correlation and always has a value between −1 and 1. A
alue of 1 determines a perfect linear relationship between X and
perfectly, a value of −1 implies an inversely linear proportion
etween X and Y , while a value of 0 implies that there is no linear
orrelation between the variables. This coefficient can be used to
dentify the most correlated inputs with the output.

XY =
cov(X, Y )

(15)

σXσY
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Table 1
Accuracy metrics name, equation, variation range and optimal value (Matera et al., 2023a; Elsheikh et al., 2019).
Accuracy metric Formula Range and optimal value

Mean square error (MSE) MSE =

∑N
i=1(ti−yi)2

N (0, +∞)

Mean absolute error (MAE) MAE =

∑N
i=1 |ti−yi |

N (0, +∞)

Root mean square error (RMSE) RMSE =
√
MSE (0, +∞)

Coefficient of variance (COV) COV =
RMSE∑N
i=1 y2i
N

· 100 (0, +∞)

Correlation coefficient (CC) CC = R =
N

∑N
i=1 tiyi−

(∑N
i=1 ti

)(∑N
i=1 yi

)
[
N

(∑N
i=1 t2i

)
−

(∑N
i=1 ti

)2][
N

(∑N
i=1 y2i

)
−

(∑N
i=1 yi

)2] (−∞, 1)

R-square (R2) R2
= CC2 (0, 1)

Coefficient of determination (COD) COD =

[∑N
i=1(ti−tm)(yi−ym)

]2
∑N

i=1(ti−tm)2
∑N

i=1(yi−ym)2
(0, +∞)

Efficiency coefficient (EC) EC = 1 −

∑N
i=1(ti−yi)2∑N
i=1(ti−tm)2

(−∞, 1)

Overall index of model
performance (OIMP)

OIMP =
1
2

[
1 −

(
RMSE

tmax−tmin

)
+ EC

]
(−∞, 1)

Coefficient of residual mass (CRM) CRM =

∑N
i=1 ti−

∑N
i=1 yi∑N

i=1 ti
(−∞, +∞)
0

2.2. Photovoltaic mathematical modelling

Determining the energy produced by a PV system for any
eather conditions is one of the most essential steps in designing
nd verifying a PV system’s performance. Most of the forecasting
odels for PV electricity are based on a global simple energy
ethod or complex method according to the resolution of the
quivalent electric circuit representing a PV cell.
Regarding the global simple energy methods, the input data

elated to a specific day are employed as a reference in repre-
enting the entire month. All days of the month in question are
onsidered identical to this single representative day. The simpli-
ied energy methods use the statistical concept of the usability of
olar radiation. Those commonly used are the Siegel method and
he Clark method, applicable both for the verification and for the
eneral design of the systems.
With respect to Siegel, it is valid if the electricity produced is

imultaneously absorbed by the load, assumed constant (Siegel
t al., 1981; Mazzeo et al.). This hypothesis is true in the case of
rid-connected systems, in which any electrical power produced
n excess, compared to that absorbed by the load, is transferred
o the electricity grid. The method estimates the monthly average
aily yield of the PV field based on the monthly average daily
rradiation and air temperature values. Also, it can be applied for
valuating the monthly average daily system performance for a
onstant 24 hr-per-day load with a battery of specified capacity.
hile the Clark method considers the variable monthly average
ourly profiles of the electrical load and uses monthly average
ourly irradiation and air temperature in the average monthly
ays (Clark et al., 1984). The method is based on radiation statis-
ics and utilizability, in addition, it can account for variability
n the electrical demand as well as for the variability in solar
adiation.

The modelling of the physical behaviour of the PV cell is
ssential to correctly evaluate the electrical energy that can be
roduced for a reliable estimation of the economic return of the
nvestment. The most widely used complex methods are based
n the possibility of describing the characteristic curve (I–V) of
he PV cell analytically as a function of the absorbed irradiance
nd cell temperature. The physical behaviour of the cell varies
ubstantially as a function of solar irradiation, electrical load
nd operating cell temperature. This last parameter is strongly
ariable in relation to the convective thermal exchange with
he external environment. It is also sensitive to wind speed and
6273
direction, external air temperature and surrounding surfaces. The
operating cell temperature is a function of the radiative heat
exchange (and therefore of the transmission coefficient of the
cover glass and the absorption coefficient of the semiconductor).
It is essential to fully understand the variations in operating cell
temperature as it directly influences the electrical parameters of
the generation system.

Various analytical and numeric methods, of varying complex-
ity, were proposed for describing the behaviour of a PV cell
(I–V characteristic curve) for specific temperature and radiation
conditions. Many studies have focused on the modelling of PV
modules and have developed electric models with different levels
of complexity. These models differ mainly in the number of
diodes, shunt resistance (infinite or finite), ideality factor (fixed
or variable), and numerical methods used to determine unknown
parameters. Most of the electrical models available in the liter-
ature, considering single diode and two diodes electrical models
based on 3 to 7 parameters, are described in detail by Tossa et al.
(2014). Another useful review on PV modelling and simulation
was outlined by Chin et al. (2015), deepening the concepts behind
the main models of PV cells and highlighting their respective
advantages and drawbacks. Similarly, Humada et al. (2016) com-
prehensively reviewed the foremost issues of the methods of the
extraction of PV cell parameters for single-diode and double-
diode models. The main task is the model parameter extraction
based on the number of PV parameters (Lun et al., 2013; Siddiqui
and Abido, 2013; Ma et al., 2014; Ali et al., 2016; Chen et al.,
2016; Wu et al., 2018; Nunes et al., 2019; Xu and Wang, 2017;
Yu et al., 2019, 2018; Mares et al., 2015; Humada et al., 2020;
Xu et al., 2014; Orioli and Di Gangi, 2013). Recently, a novel
algorithm was proposed to identify the unknown parameters for
different PV models including the static PV models (single-diode
and double-diode) and dynamic PV model (Elaziz et al., 2021).

Determining the PV parameters of the model requires solving
nonlinear equations obtained from the resolution of the electrical
circuit. After choosing an electrical model, another major problem
lies in the method of extracting these parameters; it is difficult to
obtain the optimal parameters of these models analytically. For
this purpose, many implicit, explicit, or iterative algorithms were
developed based on experimental, numerical, and optimization
techniques or combinations of these (Tossa et al., 2014). This
obstacle is often the reason why the two-diode model is not
used, even though it might be the most accurate. Some authors
have proposed and used an equivalent circuit with a pair of
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Fig. 3. Two-diode equivalent electrical circuit.
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Fig. 4. Equivalent electric circuit with one diode (5 parameters).

iodes, a current generator, and two resistors (see Fig. 3). The
nverse saturation currents of the two diodes (I01, I02) and the
wo diode ideality factors (n1, n2) depend on the properties of
he two diodes. Such a model involves the determination of seven
arameters, namely the light current (IL), diode ideality factors
n1, n2), series resistance (Rs) and shunt resistance (Rp).

The equation in an implicit form related to the equivalent
ircuit in Fig. 3 is as follows:

= IL − I01

(
e
(
V+I Rs
n1Vt

)
− 1

)
− I02

(
e
(
V+I Rs
n2Vt

)
− 1

)
−

V + I Rs

Rsh

(16)

Where:
IL is the light current;
I01, I02 are the inverse saturation current of the two diodes;
n1, n2 are the two diode quality factors;
Rs is the series resistance: it represents the set of resistances

ue to both the cell material and contact resistance between the
etal grid and the crystal surface;
Rsh is the shunt resistance: this resistance is due to current

eakage in the junction, and it depends almost exclusively on the
ethod used to make the junction;
Vt =

KBTc
q which is defined as thermal voltage;

q is the charge of the electron q = 1.602 × 10−19 C;
KB is the Boltzmann constant KB = 1.381 × 10−23 J

K ; and
Tc is the cell temperature.
The solution of the previous equation exists and is mathemat-

cally determinable; however, the implicit form and the presence
f two exponential elements make the calculation of the seven
arameters of the equivalent circuit very complex, and also the
esolution methods in the literature are unreliable as they can
uickly diverge towards incongruent solutions. For these rea-
ons, other authors have preferred to use, in the development
f their models, an equivalent electrical circuit representing a 5-
arameter model, in which there is only one diode, in addition to
he current generator and the two resistors (see Fig. 4).
6274
Fig. 5. Equivalent electrical circuit of a diode (4 parameters).

The equation in an implicit form related to the equivalent
circuit in Fig. 4 is as follows:

I = IL − I0

(
e
(
V+I Rs
n Vt

)
− 1

)
−

V + I Rs

Rsh
(17)

ts resolution is simpler since it involves the determination of five
arameters (IL, I0, n, Rs, Rsh).
In general, it is possible to state that the problem of modelling

he electrical behaviour of a PV cell was addressed, in most
f the models in the literature, using the simplified one-diode
odel that provides for the determination of five parameters, as

his model manages to fully describe the characteristic curve (I–
), under standard conditions, of most modern PV panels. This
appens because the curve (I–V) of modern panels is particularly
quared as they are characterized by very small values of series
esistance Rs and very high values of shunt resistance Rsh.

A further reasonable simplification can be applied to elimi-
ate one of the five unknown parameters on the same type of
ne-diode model. The simplification that is generally adopted
onsiders a shunt resistance of infinite value (Rsh→∞); this as-
umption is particularly correct for crystalline silicon modules. In
his case, the model requires the determination of four parame-
ers (IL, I0, n, Rs), so the computational cost is further reduced (see
ig. 5). The equation in an implicit form related to the equivalent
ircuit in Fig. 5 is as follows:

= IL − I0

(
e
(
V+I Rs
n Vt

)
− 1

)
(18)

Three physical models (corresponding to three-, four-, and
five-parameter equivalent electric circuits) and two thermal mod-
els were compared by Dolara et al. (2015).

For this purpose, ten monocrystalline and eight polycrystalline
modules were calibrated and tested in SolarTechLab at Politecnico
di Milano. The degree of complexity of the model will determine
which of the methods is most reliable for determining the param-
eters involved in the mathematical expression of the model. In
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eneral, these models can be divided into two groups: numerical
ethods that require powerful mathematical means and iterative
ethods to solve the implicit nonlinear equation associated with

he PV device, and analytical methods that introduce a series of
implifications and approximations that lead to a simpler solu-
ion without introducing significant errors in the results (Tossa
t al., 2014). To estimate the parameters of electrical models, the
evenberg–Marquardt method has been demonstrated in many
tudies (Tossa et al., 2014). To solve these models based on a
ystem of exponential equations, known data are required. How-
ver, manufacturers provide only limited PV panel operating data,
uch as open-circuit voltage (Voc), short-circuit current (Isc), max-
mum power current (Imp) and maximum power voltage (Vmp),
pen-circuit voltage temperature coefficient, short-circuit current
emperature coefficient (βvoc and α1sc , respectively), and nominal
ell operating temperature (NOCT). Furthermore, these data are
vailable only under standard conditions, where the irradiance
s 1000 W/m2, and the cell temperature (Tc) is 25 ◦C (except
or NOCT, which is determined at 800 W/m2 and an ambient
emperature of 20 ◦C). These conditions result in high electrical
ower but are rarely encountered in actual operations. Indeed, so-
ar system designers need reliable means of predicting the power
utput from a PV panel under all conditions to decide whether
r not to adopt this technology. Ideally, a PV panel should always
perate at a voltage that produces maximum power. This is
ossible, approximately, by using a maximum electrical power
racker (MPPT). Without an MPPT, the PV panel operates at a
oint on the I–V characteristic curve that coincides with the
–V characteristic of the load. But the commercially available
V module sold in the market, very often, has not been tested
nder natural environmental conditions, and its performance is
ower than measured in standard condition tests (STC) given
y the manufacturer (Tossa et al., 2014, 2016). Moreover, the
nergy production is sometimes different for modules of different
echnologies with the same maximum power measured under
TC conditions. Module performance is closely related to intrinsic
haracteristics such as absorption, strength, and construction pro-
ess. The latter are generally affected (but not in the same way)
y environmental conditions, temperature, and solar irradiance
solar power and spectrum) (Merten et al., 2008). Therefore, it is
ifficult but essential to know how to choose the technology that
rovides the best tradeoff between cost and actual performance
f a module in a natural environment for a given site. One of the
ajor changes in this choice lies in the mathematical model used

o predict PV module performance accurately under real operat-
ng conditions. The choice of the electrical model can be based on
everal criteria: computational speed, PV technology, accuracy, or
e guided by the analysis of the statistical errors of each electrical
arameter. Thus, the latter approach can be used as a fast and
ccurate means of decision-making, not only for choosing the best
lectrical model to estimate the energy production of a given PV
echnology but also for choosing the best PV technology suitable
or the climatic and environmental characteristics of a given site.
t can be argued that there is no clear relationship between PV
echnology, environmental conditions, and the electrical model.
n addition, modelling a given module requires comparing the
esults with different modules. Finally, suitable PV models to
nalyze the effects of partial shading must be considered (Piccoli
t al., 2019).
In this work, the electrical power produced by a PV module

as obtained by employing a 5-parameter model based on the
quivalent electric circuit of Fig. 4 and Eq. (17).
Under the actual operating conditions, by changing the ab-

orbed solar radiation GT and the PV cell temperature Tc , the
ollowing parameters are updated as a function of the parameters
n the reference conditions:

IL = IL,ref
GT (19)
GT ,ref

6275
I0
I0,ref

=

(
Tc

Tc,ref

)3

(20)

The procedure used to determine the 5 parameters in the ref-
erence and actual conditions is developed by Fry (1999). This pro-
cedure is implemented in Type 94 of TRNSYS 17 software (Uni-
versity of Wisconsin, 2012).

TRNSYS (http://www.trnsys.com/) is a simulation software
used to simulate the behaviour of transient systems such as
energy simulation and building simulation with respect to solar
design and thermal and electrical energy performance; therefore,
it is mostly used in energy/environmental engineering, such as in
Mazzeo et al. (2021), Baglivo et al. (2020), Herdem et al. (2020)
and Matera et al. (2023b).

Type 94 includes several options, one of which is the math-
ematical model that is used to predict electrical performance.
The type can use the four-parameter model for single-crystal
or polycrystalline PV modules or the five-parameter model for
amorphous or thin-film PV modules. The difference between the
two mathematical models lies in the fact that the four-parameter
model assumes that the slope of the current–voltage curve is zero
under short-circuit conditions, while the five-parameter model
assumes a finite negative slope in the voltage-current curve under
short-circuit conditions.

Another option that type 94 allows is whether or not the
simulation should call the ‘‘incidence angle modifier’’ correlation,
which considers the increase in reflective losses when radiation is
incident on the module at wide angles. Type 94 also considers an
optional angle-of-incidence modifier correlation for calculating
the change in PV module surface reflectance as a function of the
angle of incidence of solar radiation.

Mathematically, type 94 uses an iterative search routine to
calculate the equivalent circuit characteristics, to calculate the
values of IL,ref , I0,ref , Rs,ref , Rsh and aref . The parameter values under
operating conditions are obtained by updating the IL and I0 values
as a function of absorbed solar radiation and cell temperature,
respectively. The latter is calculated using the nominal operating
cell temperature (NOCT ). In this way, the characteristic curve is
updated at each instant as a function of cell temperature and
absorbed solar radiation. In addition, the absorbed solar energy is
evaluated considering the incidence angle modifier IAM. Finally,
the electrical PV power output Ppv(t) is calculated at the max-
imum power point of the characteristic curve by the following
equation:

Ppv (t) = Imp (t) Vmp (t) (21)

The adopted model type uses temperature data from standard
NOCT measurements to calculate the module temperature Tc at
each time step. The NOCT temperature Tc,NOCT is the operating
temperature of the module at a wind speed of 1 m/s, with no
electrical load, and at a certain ambient temperature and specific
solar radiation. The values for solar radiation GT ,NOCT and ambient
temperature Ta,NOCT are usually 800 W/m2 and 20◦C. The module
temperature Tc is calculated with Eq. (22).

Tc = Ta +

(
1 −

ηc
τα

)
GT τα

UL

(22)

c is the conversion efficiency of the module, UL is the array
thermal loss coefficient and τα is the module transmittance–
absorptance product.

3. Yearly photovoltaic artificial neural network

Herein, this analysis aims to train and validate an ANN capable
of predicting the yearly energy produced by a PV module in a

http://www.trnsys.com/
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Table 2
PV module parameters at reference conditions (Canadian Solar Inc., 2023; Jakson Group, 2023; LG Electronics, 2023; Mitsubishi Electric US Inc., 2023;
Panasonic Corporation, 2023; Wuxi Suntech Power Co., 2023; Trina Solar Co., 2023; ENF Solar Ltd., 2023; Vikram Solar Limited, 2023).
Name Cells Voc

(V)
Isc
(A)

Vmp.ref
(V)

Imp.ref
(A)

NOCT
(K)

A
(m2)

µIsc
(%/◦C)

βVoc
(%/◦C)

Ppv.n
(W)

ηm
(%)

Training

CanadianSolar290 60 38.50 9.72 31.60 9.18 43.0 1.64 0.0500 −0.290 290.09 17.72
Jakson250 72 44.50 7.45 35.90 6.97 47.0 1.62 0.0400 −0.320 250.22 12.88
LG300 60 40.10 9.65 32.90 9.15 45.0 1.64 0.0300 −0.280 301.04 16.23
MLU250 120 37.60 8.79 31.00 8.08 45.7 1.66 0.0560 −0.350 250.48 15.10
Panasonic330 96 69.70 6.07 58.00 5.70 44.0 1.67 0.0340 −0.164 330.60 19.70
Suntech250 60 37.40 8.63 30.70 8.15 45.0 1.63 0.0500 −0.340 250.21 15.40
TallMax320 72 45.80 9.10 37.10 8.63 44.0 1.94 0.0500 −0.320 320.17 16.50
TP250 60 37.30 8.71 30.20 8.30 47.0 1.67 0.0442 −0.290 250.66 15.00

Validation

CHSM250 60 38.19 8.65 30.30 8.27 43.0 1.64 0.0520 −0.344 250.58 15.20
VikramSolar320 72 45.96 9.03 37.65 8.50 45.0 1.92 0.0520 −0.310 320.03 16.67
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given location by using as inputs some yearly variables identify-
ing the climate and electrical and thermal characteristics of the
PV module.

A direct prediction of yearly PV energy can be made with
his ANN using only a few yearly weather variables, as well as
lectrical and thermal characteristics of the PV module as inputs,
hile avoiding solving electric circuit equations and, therefore,
on-linear equations for determining parameters. As a result, no
ourly simulation is needed since the resulting ANN PV energy
s very close to what would have been calculated from an hourly
imulation.
The ANN was trained by considering 8 PV modules, different

n terms of electrical and thermal behaviour, and 48 localities
niformly placed around the world and characterized by high,
ntermediate, and low levels of solar radiation available, as well
s very cold, cold, medium, hot and very hot climates. The ANN
as validated on two other PV modules with different electrical
haracteristics and included in the range of electrical parameters
f the 8 PV modules.

.1. Photovoltaic modules

Eight PV modules with different electrical characteristics were
onsidered to create the ANN starting from input and output
xtracted from the TRNSYS software. Two other PV modules
CHSM250 and VikramSolar320), having electrical characteristics
n the range of values of the previous eight modules were cho-
en as validation case studies by comparing the yearly electrical
nergy obtained from the ANN and the target electrical energy
eriving from the TRNSYS simulation. Overall, ten PV modules
ere considered whose electrical and thermal characteristics at
eference conditions are reported in Table 2.

The main PV module parameters at reference conditions are:
he open-circuit voltage Voc,ref ; the short-circuit current Isc,ref ;
he voltage at the maximum power point Vmp,ref ; the current at
he point of maximum power Imp; the nominal operating cell
emperature NOCT; the area of the PV module A; the tempera-
ure coefficient of the short-circuit current µIsc ; the temperature
oefficient of the open-circuit voltage βVoc ; the nominal power
f the PV module Pn obtained from the product between voltage
nd current at the point of maximum power; the efficiency ηm.
eference conditions mean a temperature of 25 ◦C and solar
adiation of 1000 W/m2. These parameters are supplied by the
anufacturer (Canadian Solar Inc., 2023; Jakson Group, 2023;
G Electronics, 2023; Mitsubishi Electric US Inc., 2023; Pana-
onic Corporation, 2023; Wuxi Suntech Power Co., 2023; Trina
olar Co., 2023; ENF Solar Ltd., 2023; Zhejiang Chint New Energy
evelopment Co. - Astronergy Solar Inc., 2023; Vikram Solar Lim-
ted, 2023) and are required by Type 94 in TRNSYS to determine
he power produced by using the 5-parameter model.
6276
.2. Climatic data

To make the ANNs as general as possible and adaptable to any
ocality, 48 localities belonging to different climate groups of the
öppen classification and characterized by very different climates
ere considered (Kottek et al., 2006; Rubel and Kottek, 2010;
rnfield, 2020). In particular, two different localities for each
oppen climate subgroup were considered, except for the Cfb
ubgroup which has four localities. The 48 locations considered
n this work are reported in Fig. 6. The hourly values of air
emperature and horizontal total solar radiation in a typical year
m2 file are known for each locality from the TRNSYS library.

A preliminary analysis was carried out to maximize the yearly
V electrical energy produced worldwide and to identify the
ptimal inclination angle for each locality and PV module. Re-
ently, a novel data-driven approach proved that power-based
ptimization provides a different tilt angle than conventional
rradiance-based optimization because of the trade-off between
rradiance and efficiency (Ye et al., 2022).

For this purpose, the hourly power produced by varying the
nclination angle was calculated through an analysis carried out
ith the TRNSYS software. A parametric analysis was done by
hanging the inclination angle from −90◦ to 90◦ with a step of 2◦

nd using as surface azimuth 0◦ or 180◦ in North and South hemi-
phere localities, respectively. Dynamic simulations performed
ave determined the hourly electrical power produced varying
he inclination angle, and for each locality, 91 different series of
ourly electrical powers were printed in one year. Overall, for
ach PV module, 4368 (91 angles × 48 localities) Excel sheets
ere printed containing the hourly electrical power at varying
ngles of inclination. The hourly data were used to determine
he yearly electrical energy produced for each location, given by
he sum of the hourly powers. The optimum angle of inclination
or a given location and PV module is that which leads to the
aximum energy. Fig. 7 illustrates the yearly electrical energy
roduced by varying the PV inclination angle in all 48 localities
or the Jakson250 module.

The optimal inclination angle depends on the locality and,
s expected, is negative in the North hemisphere localities and
ositive in the South hemisphere localities. Further, the optimal
nclination angle and the relative highest yearly energy generated
g are reported for each locality and PV module in Table 3.
In the training phase, the PV modules were considered placed

t the optimal angle of each specific locality. In this way, the ANNs
an predict the PV hourly performance worldwide directly on the
ptimal inclination angle. For each PV module, the relationship
etween the optimal PV inclination angle and the latitude of the
8 locations considered was derived. Empirical equations of the
ptimal angles as a function of the latitude were obtained for
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Fig. 6. Localities belonging to the training and validation set along with the Koppen climate classification.
each PV module, as shown in Fig. 8. These equations are useful to
calculate the optimal inclination angle for any locality worldwide.

As shown by Table 3 and by the regression curves, the latitude
strongly influences the optimal inclination angle value, while the
PV module typology has a very slight impact.

3.3. Input and output data for the ANN training

To train the yearly ANN, the electrical characteristics of 8 PV
modules and the environmental characteristics of all 48 localities
were considered. The ANN created was validated by considering
two other PV modules with different electrical characteristics in
the 48 localities.

The ANN training input data matrix is composed of:

• The yearly horizontal total solar energy obtained as the sum
of the hourly solar radiation of a typical year Es,y [Wh/m2];

• The yearly average external air temperature obtained as an
average of the hourly temperatures of a typical year Tea,y
[◦C];

• Number of individual cells in a PV module N [–];
cs
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• Open-circuit voltage at reference conditions Voc,ref [V];
• Short-circuit current at reference conditions Isc,ref [A];
• Voltage at maximum power point along IV curve at refer-

ence conditions Vmp,ref [V];
• Current at maximum power point along IV curve at refer-

ence conditions Imp,ref [A];
• Nominal operating cell temperature NOCT [◦C];
• Temperature coefficient of short-circuit current µIsc [%/◦C];
• Temperature coefficient of open-circuit voltage βVoc [%/◦C].

The ANN training output data matrix is composed of:
• Yearly produced solar PV energy at the optimal inclination

angle Epv,y (Wh) calculated as the sum of the hourly electrical
power values obtained with the TRNSYS software for each locality
and each PV module.

The training input matrix of the ANN consists of 10 parameters
for each locality and PV module. The input vector is composed of
as many rows as there are parameters and as many columns as
there are localities and PV modules. Overall, an input matrix of 10
rows and 384 columns (48 localities × 8 PV modules) is used for
the ANN training phase. The training output vector of the ANN
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Fig. 7. Produced yearly energy by varying the PV inclination angle in all 48 localities for the Jakson250 module.
is made up of the yearly electrical energy produced by each of
the 8 PV modules in each of the 48 localities. Overall, an output
matrix of 1 row and 384 columns (48 localities × 8 PV modules)
is used for the ANN training phase. The yearly horizontal solar
energy Es,y and average external air temperature Tea,y for the 48
localities considered are reported in Fig. 9.

Fig. 9 highlights the extremely variable climatic conditions
considered with external air temperatures variable between
−20 ◦C and 30 ◦C and solar radiation between 500 kWh/m2 and
2500 kWh/m2. This makes the database and ANN created very
general. In addition, the yearly produced solar PV energy at the
optimal inclination angle Epv,y obtained with the TRNSYS software
for each PV module by varying the locality is illustrated in Fig. 10.

Fig. 10 shows that the yearly produced PV energy regularly
increases for a locality with a higher yearly horizontal total solar
energy for all PV modules. The lowest electricity production is
observed for the MLU250 module variable between 148.55 kWh
and 419.37 kWh from the locality with the lowest yearly solar
energy available to the locality with the highest yearly solar
energy available, while the highest one for the Panasonic330,
variable between 211.67 kWh and 683.56 kWh.
6278
4. Results and discussion

4.1. Training phase

The input matrix of size [10 × 384] and output matrix of size
[1 × 384] was imported into Matlab and the Neural net fitting
tool was used for the ANN training purpose. The dataset was
divided into three groups: 268 (70%) combinations of parameters
used for training, 58 (15%) combinations of parameters used for
the validation, and 58 (15%) combinations of parameters of the
data used for testing. The Levenberg–Marquardt algorithm was
chosen as the learning method, and the sigmoid transfer function
and the linear transfer function were used, respectively, in the
hidden layer and output layer. In addition, an ANN optimization
analysis was carried out that consisted of evaluating the accuracy
metrics described in Section 2.1.3., by varying the number of
neurons in the hidden layer from 2 to 20 with a step of 2 neurons.
The results of this analysis are reported in Figs. 11 and 12.

Fig. 13 shows the boxplots of the error and relative error on
the yearly PV energy evaluation by means of the ANNs by varying
the number of neurons.
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Table 3
Optimal inclination angle and the relative highest yearly energy generated for each locality and PV module.

CanadianSolar290 Jakson250 LG300 MLU250 Panasonic330 SunTech250 TallMax320 TP250 CHSM250 VikramSolar320

β (◦) Eg (kWh) β (◦) Eg (kWh) β (◦) Eg (kWh) β (◦) Eg (kWh) β (◦) Eg (kWh) β (◦) Eg (kWh) β (◦) Eg (kWh) β (◦) Eg (kWh) β (◦) Eg (kWh) β (◦) Eg (kWh)

Toamasina −16 453.8 −16 393.9 −16 463.8 −16 320.9 −16 530.7 −16 392.3 −16 504.6 −16 390.2 −16 398.7 −16 504.5
Singapore 2 394.7 2 342.7 2 402.4 2 270.2 2 463.2 2 341.2 2 439.4 2 339.0 2 347.5 2 439.2
Recife, Pernambuco −4 520.0 −4 450.1 −4 526.9 −4 352.6 −4 612.2 −4 450.3 −4 579.2 −4 446.1 −4 457.8 −4 579.4
Miami, Florida 24 471.7 24 409.2 24 481.3 26 331.0 24 552.3 24 407.9 24 524.6 24 405.4 24 414.6 24 524.6
Lihue, Hawaii 20 468.5 20 406.7 20 478.5 10 274.0 20 548.3 20 405.1 20 521.0 10 342.1 20 411.8 20 521.0
Mombasa 0 487.6 0 422.6 0 495.8 16 388.0 0 572.5 0 421.9 0 542.7 16 488.9 0 428.9 0 542.8
Caracas 10 398.2 10 345.8 10 406.2 20 329.7 10 467.2 10 344.2 10 443.2 20 402.8 10 350.5 10 443.1
Kano 16 570.0 16 492.8 16 577.2 0 336.2 16 671.2 16 493.8 16 634.8 0 418.7 16 501.5 16 635.2
Baghdad 32 584.9 32 506.5 32 597.3 32 419.4 32 683.6 32 506.1 32 649.8 32 502.9 32 512.8 32 650.0
Cairo 28 548.0 28 475.1 28 559.6 28 392.4 28 640.4 28 474.1 28 609.0 28 471.3 28 480.9 28 609.1
Kabul 32 526.2 32 457.0 32 544.4 34 260.1 32 608.3 32 454.2 32 582.6 34 295.0 32 459.2 32 582.5
Baku 28 352.4 28 306.6 28 364.2 10 259.9 28 409.1 28 303.9 28 390.8 10 331.9 28 308.5 28 390.5
Odessa, Texas 34 341.6 34 297.6 34 355.7 34 403.3 34 394.2 34 294.1 34 378.1 32 454.1 34 298.3 34 377.7
Maracaibo 10 386.6 10 335.5 10 393.3 28 259.3 10 455.0 10 334.3 10 430.7 28 303.8 10 340.8 10 430.6
Buenos Aires −26 452.6 −26 393.4 −28 466.4 36 331.6 −26 525.5 −26 390.7 −26 502.1 36 382.3 −26 396.3 −26 501.8
Milan 34 327.7 34 285.5 34 340.5 −28 353.0 34 378.9 34 282.2 34 363.0 −28 410.1 34 286.5 34 362.6
Berlin 36 277.4 36 242.0 36 289.6 34 331.3 36 319.9 36 238.6 36 307.0 34 376.9 36 242.2 36 306.6
London 36 251.1 36 219.2 36 262.7 32 251.5 36 289.1 36 215.8 36 277.8 32 286.2 36 219.1 36 277.3
Vancouver, British Columbia 36 355.2 36 309.6 36 370.6 −28 335.3 36 408.9 36 305.9 36 392.9 −26 390.1 36 309.8 36 392.5
Melbourne, Victoria −28 409.4 −28 356.5 −28 424.2 36 246.0 −28 473.6 −28 353.1 −28 453.7 34 282.8 −28 358.0 −26 453.3
Bogotá, Cundinamarca 2 408.6 2 355.8 2 424.1 32 377.1 2 471.9 2 352.2 2 452.5 30 467.5 2 357.0 2 452.1
Wellington −30 378.3 −30 329.6 −30 393.3 20 254.5 −30 436.5 −30 325.9 −30 418.8 20 310.5 −30 330.4 −30 418.4
Reykjavík 44 230.8 44 201.7 44 244.3 38 210.7 44 263.3 44 197.9 44 254.4 36 239.6 44 200.4 44 253.9
Auckland Islands −28 409.9 −30 357.0 −30 425.0 36 191.9 −28 473.9 −30 353.4 −30 454.2 36 217.0 −28 358.4 −28 453.8
Rome 36 443.2 36 385.5 36 457.7 36 276.0 36 513.8 36 382.5 36 491.4 36 307.1 36 387.8 36 491.2
Adelaide −28 475.8 −28 413.4 −28 490.0 −30 309.4 −26 552.6 −28 410.9 −28 527.8 −28 353.4 −28 416.6 −28 527.6
Porto 34 436.7 34 380.0 34 452.0 44 185.3 34 505.2 34 376.8 34 483.9 44 200.0 34 381.7 34 483.6
La Coruna 32 331.5 32 288.9 32 344.7 −30 311.0 32 382.7 32 285.5 32 367.1 −28 353.8 32 289.7 32 366.6
New Delhi 30 544.6 30 471.4 30 553.2 −26 409.9 30 639.5 30 471.5 30 606.0 −24 469.9 30 478.7 30 606.3
Hong Kong 20 360.9 20 313.7 20 370.0 4 327.4 20 421.8 20 311.7 20 401.2 4 388.2 20 317.1 20 401.0
Johannesburg −24 545.0 −24 473.3 −24 561.2 2 311.7 −24 632.3 −24 471.0 −24 604.4 2 352.8 −24 476.7 −24 604.3
Nairobi 4 450.9 4 391.7 4 462.9 −32 289.6 4 525.3 4 389.6 4 500.8 −30 326.7 4 395.4 4 500.6
Bucharest 32 361.9 32 315.1 32 375.9 34 273.4 32 418.3 32 311.8 32 400.8 32 312.4 32 316.2 32 400.4
Toronto, Ontario 34 390.9 34 340.7 34 408.9 36 306.0 34 449.1 34 336.4 34 431.9 34 338.1 34 340.4 34 431.4
Moskva 40 275.1 40 240.1 40 289.2 38 279.6 40 315.5 40 236.3 40 303.8 36 316.3 40 239.4 40 303.3
Ottawa, Ontario 38 395.4 38 344.9 38 415.1 34 250.4 38 453.3 38 340.0 38 436.6 32 283.0 38 343.9 38 436.0
Tromsø 46 185.6 46 162.2 46 196.8 30 355.6 46 211.7 46 159.0 46 204.5 30 401.6 46 161.1 46 204.1
Anchorage, Alaska 46 268.8 46 234.9 46 284.5 52 287.5 46 306.9 46 230.6 46 296.3 52 285.1 46 233.4 46 295.8
Oymyakon, Sakha Republic 52 356.8 52 311.9 52 387.2 42 215.4 50 400.9 52 304.3 52 390.1 40 238.0 50 305.9 52 389.2
Verhojansk, Sakha Republic 52 316.5 52 276.6 52 340.4 40 312.8 52 357.3 52 270.6 52 347.0 38 342.3 52 272.5 52 346.2
Hakkâri 30 465.2 30 404.4 30 482.3 36 276.9 30 537.6 30 401.3 30 515.0 36 308.0 30 406.0 30 514.8
Cambridge Bay, Nunavut 52 326.8 52 286.1 52 354.8 44 320.0 52 366.1 52 279.1 52 357.3 42 341.6 52 280.2 52 356.5
Dras 28 430.7 28 375.5 28 453.8 30 349.6 28 491.9 28 370.2 30 474.8 28 373.2 28 373.6 28 474.2
Flagstaff, Arizona 36 531.1 36 462.1 36 553.1 36 418.9 36 610.8 36 457.9 36 587.1 36 459.2 36 462.5 36 586.8
Beijing 36 366.2 36 319.1 36 381.4 46 148.6 36 422.5 36 315.3 36 405.3 46 160.8 36 319.7 36 404.8
Seoul 32 327.5 32 285.6 32 341.9 48 215.6 32 377.4 32 281.8 32 362.3 46 233.0 32 285.8 32 361.8
Pyongyang 36 356.1 36 310.6 36 372.9 52 305.8 36 409.4 36 306.3 36 393.6 52 310.8 36 310.3 36 393.1
Vladivostok 42 394.0 42 344.1 42 416.2 52 266.9 42 449.5 42 338.4 42 434.3 52 275.3 42 341.9 42 433.6
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Fig. 8. Optimal PV inclination angle as a function of the latitude for the ten PV modules.
An overall analysis of all metrics and graphs shows that by
ncreasing the number of neurons from 2 to 10, a sensible im-
rovement of the ANN accuracy can be observed. Instead, above
0 neurons the accuracy remains rather stable. This is evident
rom Fig. 11 on the top, where R2, R and OIMP increase and MSE
nd RMSE decrease with more evidence from 2 to 10 neurons.
imilar behaviour can be observed for the COD in Fig. 12 on the
op; however, the COD growing trend is developed until 20 neu-
ons with an intermediate reduction between 14 and 18 neurons.
he absolute error obtained by using 2 neurons has a range of
80000 kWh to 70000 kWh, as highlighted in Fig. 11 below.
6280
This range narrows as the number of neurons increases, becom-
ing minimal and equal to ≈100000 kWh (Emax ≈ 40000 kWh
and Emin ≈ −60000 kWh) for 14 neurons. The average and the
standard deviation of the absolute error are stable around about
1000 kWh and 150000 kWh, respectively. This is also highlighted
in Fig. 12 at the top, where the COV only decrease from 4.8% to
3.8% by increasing the number of neurons from 2 to 20. All the
ANNs, on average, slightly underestimate the yearly PV energy as
highlighted by the negative CRM in Fig. 12 at the bottom. Only
with 14 neurons, on average, the ANN slightly overestimates. By
using 20 neurons, the highest R, R2, OIMP and COD of 0.9898,
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Fig. 9. Yearly horizontal solar energy and average external air temperature for the 48 localities.

w
v

d
t
t
o

d
a
d
d
t
t
i

i
t
p
a
t

0.9797, 0.9761 and 0.9809, respectively, and the lowest RMSE,
MSE, and COV of 14.67 kWh, 215.30 MWh and 3.8%, respectively,
are obtained. In addition, the CRM is almost zero and the error
boxplot is the least wide and is characterized by the mean value
closest to zero. For all these reasons, the ANN with 20 neurons
was considered the optimal one and is proposed as reliable and
accurate for the yearly PV energy forecasting.

All details related to the ANN architecture and the training,
testing and validation phases are reported in Fig. 14, which shows
the screen of the Neural net fitting tool after the end of the learn-
ing process. In the figure, also the number of epochs required in
the training phase can be seen. Fig. 15 highlights the mean square
error trend for the training, testing, and validation phases on the
left and the trends of the gradient, damping factor, and validation
checks on the right by increasing the number of epochs.

The mean square error of training, testing, and validation
curves significantly decrease in the first 8 epochs. The validation
and testing curves slightly increase after the 8th epoch, while
the training curve slightly decreases. For this reason, the learning
process required 14 epochs and was terminated after six valida-
tion checks. The results obtained after 8 epochs were considered
the best ones since by increasing the epochs the generaliza-
tion stops improving and the overfitting can be observed. The
validation and test curves, representing the mean square error
as a function of the epochs, are very close to the 8th epoch.

The Levenberg–Marquardt backpropagation algorithm at the 8th

6281
epoch provides a gradient of 6.39 × 107 and a damping parameter
µ of 1 × 106. The gradient decreases during the entire process,
hile the damping parameter first increases rapidly and then
ery slowly.
The selected optimal ANN architecture is very accurate, for all

ata groups’ training, testing, and validation, as demonstrated by
he high frequency of errors very close to zero (see Fig. 16) and by
he almost perfect regression between the target and ANN output
n the bisector line as shown in Fig. 17.
Fig. 16 shows that the frequency of outliers is very low for all

ata groups, demonstrating the highest reliability in reproducing
ccurate results. In addition, Fig. 17 reveals the very high R of the
ifferent regressions that are between 0.985 for the validation
ata and 0.991 for the training data. Overall, R is 0.990 for
he entire dataset. Besides, Table 4 shows the Pearson correla-
ion coefficient ρxy between the ANN output and different ANN
nputs.

By analysing Table 4, it can be deduced that the yearly hor-
zontal total solar energy Es,y is the most correlated input to
he output with a ρxy value of 0.81, representing an almost
erfect linear dependency between the variables. Also the yearly
verage external air temperature has a linear dependency with
he output; however, with a lower ρxy value. The same con-
siderations can also be done for the temperature coefficient of
open-circuit voltage µVoc , the open-circuit voltage at reference

conditions Voc,ref and the voltage at maximum power point at
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Fig. 10. Yearly produced solar PV energy at the optimal inclination angle Epv,y obtained with the TRNSYS software for each PV module by varying the locality. Top:

raining PV modules; Bottom: Validation PV modules.
Table 4
Pearson correlation coefficient between the ANN output and inputs.
Variable Pearson correlation coefficient ρxy

Epv,y (Wh) 1.00
Es,y (Wh/m2) 0.81
Tea,y (◦C) 0.43
Ncs (–) −0.10
Voc,ref (V) 0.35
Isc,ref (A) −0.11
Vmp,ref (V) 0.35
Imp,ref (A) −0.09
NOCT (◦C) −0.35
µIsc (%/◦C) −0.27
µVoc (%/◦C) 0.37

reference conditions Vmp,ref . Instead, an increase of the nomi-
al operating cell temperature NOCT or temperature coefficient
6282
of short-circuit current µIsc leads to a decrease in the output,
denoting an inversely proportional correlation. Finally, there is
no significant linear dependency between the output and the
number of individual cells Ncs in a PV module and the current
at maximum power point at reference conditions Imp,ref .

Fig. 18 highlights the linear regression between the output
(yearly PV electricity Epv,y) and the most two linearly correlated
inputs, namely the yearly horizontal total solar energy Es,y and
the yearly average external air temperature Tea,y.

In particular, an R2 of 0.66 characterizes the regression be-
tween annual total horizontal solar energy and annual PV elec-
tricity. Taking into account the wide range of weather conditions
in the locations considered and the different electrical and ther-
mal characteristics of the PV modules selected, this value can be

considered relatively high.
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Fig. 11. Accuracy metrics by changing the number of neurons. Top: R2 , R OIMP, MAE and RMSE; Bottom: Emin , Eavg , Emax and Esd .
.2. Validation phase

The ANN trained in the previous section was validated sep-
rately on two new PV modules with electrical characteristics
n the range of the PV modules used in the training phase.
he Matlab algorithm code used for this purpose is reported
n Appendix. A new input vector of size [10 × 48] for each PV
odule was loaded to simulate the yearly produced PV energy.
he input vector contains: the yearly horizontal total solar energy
s,y for each of the 48 localities in the first row, the yearly average
xternal air temperature T for each of the 48 localities in the
ea,y

6283
second line and, in the remaining 8 rows, there are the electrical
parameters of the PV module considered, which are constant for a
specific PV module. By launching the Matlab algorithm code with
this new input data, the vectors of the yearly energies produced
by the CHSM250 and VikramSolar320 PV modules were obtained
for each of the 48 localities. To assess the ANN accuracy, these
values were compared with the yearly energy values obtained
from the TRNSYS software for the 48 localities, as reported in the
regression curves of Fig. 19.

The linear regression shows that there is an almost perfect
correlation between the yearly energy calculated with TRNSYS
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Fig. 12. Accuracy metrics by changing the number of neurons. Top: COV and COD; Bottom: Erel,avg and CRM.
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nd that obtained with the ANN for all 48 localities considered.
he R2 is in the range of 0.96 ÷ 0.97 for both PV modules, while
he angular coefficients of the regression curves are 0.7834 and
.8989, respectively, for the VikramSolar320 and CHSM250 PV
odules. The high accuracy of the ANN in the validation phase

s also confirmed by the values of accuracy metrics obtained for
he two PV modules individually and globally listed in Table 5.

Globally, despite the ANN was not trained with data related
o the VikramSolar320 and CHSM250 PV modules, the accuracy
etrics are only slightly worse than those obtained in the training
hase;
 i

6284
Fig. 20 shows the comparison between the yearly energies
roduced by the two PV modules obtained with the TRNSYS
oftware and with the ANN for the 48 localities; moreover, the
elative percentage error Erel,avg , calculated as the average of all
ercentage relative error obtained in each locality, is also re-
orted. The frequency distribution of the relative error is reported
or the two PV modules in Fig. 21.

The obtained figures demonstrate that the ANN also works
erfectly with these new PV modules, as highlighted by the
omparison of the target and ANN output for the different local-
ties. The relative error ranges between −19.5% (New Delhi) and
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Fig. 13. Boxplots of the error, at the top, and relative error, at the bottom, on the yearly PV energy evaluation by means of the ANNs by varying the number of
neurons.
4.8% (in Johannesburg) for the CHSM250 and between −13.3%
Hakkâri) and 13.4% (in Johannesburg) for the VikramSolar320.
he relative error distribution highlights that the ANN mainly
verestimates the yearly PV electricity for the CHSM250 module
haracterized by a lower module power. By increasing the PV
odule power, the relative distribution is almost perfectly sym-
etrical around zero, as exhibited for the VikramSolar module.
inally, relative errors between −7.5% and 7.5% are highlighted
or 50% of localities in the case of the CHSM250 PV module and
1% of localities in the case of the VikramSolar320 PV module.

. Conclusions

Recently, ANN-based machine learning models employing
odels have proved their capabilities as a precious prediction

ool. In this research work, the ANN model for the prediction
6285
of yearly PV electricity directly on the optimal PV inclination
angle was trained and validated. For the inclination angle, some
empirical equations were obtained as a function of the latitude.
Meteorological and PV module parameters were used in the
TRNSYS environment to generate the training dataset. The ANN
model requires as inputs only a small number of yearly weather
data and PV module parameters and was successfully trained in
Matlab software for 8 PV modules in 48 localities and validated
for two other PV modules. The final numerical results of the ANN
model showed considerable accuracy compared to those obtained
with dynamic simulations performed with physical-based PV
analytical models. In the training phase, the performance metrics
of the developed ANN model revealed values of R, R2 and OIMP of
0.9898, 0.9797 and 0.9761, respectively, and RMSE, MSE, and COV
of 14.67 kWh, 215.3 mWh and 3.8%, respectively. In addition, the
CRM is almost zero.
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Fig. 14. Screen of the Neural net fitting tool after the end of the training process.

Fig. 15. Mean square error trend for the training, testing and validation phases on the left and trends of the gradient, damping factor and validation checks on the
right by increasing the number of epochs.

6286
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Fig. 16. Error histogram for the training, testing, validation and all data.

Fig. 17. Regression between the ANN output and the target for the training, testing, validation and all data.

6287
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Fig. 18. Linear regression between the output and yearly horizontal total solar energy on the left, and between the output and yearly average external air temperature

on the right.
Fig. 19. Linear regression between the ANN output and the target for the VikramSolar 320 PV module on the left and for the CHSM250 on the right.
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Table 5
Obtained accuracy metrics for CHSM250 and VikramSolar320 PV modules and
globally.

Global VikramSolar320 CHSM250

MAE (kWh) 25.98 17.10 34.85
R2 (-) 0.9218 0.9699 0.9628
MSE (MWh) 1020.72 513.82 1527.62
RMSE (kWh) 31.95 22.67 39.08
EC (–) 0.9052 0.9218 0.8551
CRM (–) 0.0301 −0.0254 0.0740
COV (%) 7.7693 6.6037 8.1566
R (–) 0.9601 0.9848 0.9812
COD (–) 0.9310 0.9699 0.9628
OIMP (–) 0.9199 0.9287 0.8837
Emax (kWh) 63.99 63.99 28.92
Emin (kWh) −88.20 −25.22 −88.20
Eavg (kWh) −12.03 8.96 −33.02
Esd (kWh) 29.75 21.04 21.13
Erel,avg (%) −3.44 1.45 −8.34

Instead, in the validation phase, R2 and RMSE obtained are
0.9218 and 31.95 kWh. The highest relative error found is −19.5%
n New Delhi and relative errors between −7.5% and 7.5% are
btained for 50% of localities in the case of the first PV module
ith a nominal power of 250 W and for 81% of localities in the
ase of the second PV module of 320 W.
This emphasizes that the ANN model is almost accurate and

ersatile as compared to other complex models to predict yearly
V electricity while requiring few weather and PV input data,
ower user knowledge and expertise and execution time.
 o
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Future research and PV sizing can be directly performed with
he ANN proposed using only a few yearly weather variables, as
ell as electrical and thermal characteristics of the PV module
s inputs, while avoiding solving electric circuit equations and,
herefore, non-linear equations for determining parameters. As a
esult, no hourly simulation is needed since the resulting ANN PV
nergy is very close to what would have been calculated from an
ourly simulation.
This study has two limitations:

• The most important limitation is that the 5-parameter
model was used for all types of considered PV modules.
Such an assumption must be made to make uniform all
simulations, make the ANN of global value and reduce time
spent to identify the best model to be used for each type of
PV module. The selected 5-parameter represents a trade-off
between computation cost and accuracy.

• Another limitation is that the yearly weather parameters
are summarized with their average values; no input data
are provided to ANN to take into account the variability of
climatic conditions in time.

or future research, we recommend the following tasks: (i) use of
n ANN with a more advanced algorithm to further improve the
rediction accuracy; (ii) proposal of other optimized ANNs using
ata from simulations performed by other PV models with 4, 6

r 7 parameters; (iii) evaluation of the effect of introducing the
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Fig. 20. Yearly electrical energies produced by the CHSM250 and VikramSolar320 PV modules obtained with the TRNSYS software and with the ANN for the 48

ocalities.
tandard deviation of weather variables as an additional input in
he training data set on the accuracy of the ANN.

As a further development of this research, it should be taken
nto account that statistical analysis of the results indicated that
he yearly horizontal total solar energy and yearly average air
emperature had the most significant correlation with the PV
utput. For this reason, these two variables may be used as the
6289
only input variables in future analysis to make the ANN further
simple and more user-friendly.

Given the demonstrated tool flexibility and accuracy for dif-
ferent weather conditions, the use of the ANN-based machine
learning algorithm proposed can be very beneficial in future
investment decision-making to develop incentive plans for PV
economic growth, taking into account the ongoing climate change.
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Fig. 21. Frequency distribution of the relative error of the ANN for the CHSM250 and VikramSolar320 PV modules.
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k k − th step in the training process
ε Parameter of the activation function
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H Hessian matrix
J Jacobian matrix
ti i − th value of the target output obtained from the
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tm Mean value of the target output obtained from the
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yi i − th value of the output predicted by the ANN
ym Mean value of the output predicted by the ANN
N Total number of training data
e Error vector
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E Error value
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Esd Standard deviation of error
Erel,avg Relative average error
ρXY Pearson’s correlation coefficient of input X and

output Y variables
σX Standard deviation of input variable X
σY Standard deviation of output variable Y
GT Solar radiation
IAM Incidence angle modifier
Ppv Electrical power output of the PV module
Pn Nominal power of the PV module
Imp Current at maximum power point of the PV

module
Vmp Voltage at the maximum power point of the PV

module
Tc,NOCT Operating cell temperature at standard NOCT

measurements
GT ,NOCT Solar radiation at standard NOCT measurements
Ta,NOCT Ambient temperature at standard NOCT

measurements
µsc Temperature coefficient of the short-circuit current
A Area of the PV module
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ηm Efficiency of the PV module
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Es,y Yearly horizontal total solar energy
Tea,y Yearly average external air temperature
Ncs Number of individual cells in a PV module
Vmp,ref Voltage at maximum power point along IV curve at
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at reference conditions
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