479 research outputs found

    Genome sequence of Pantoea ananatis strain amg 501, a plant growth-promoting bacterium isolated from rice leaves grown in paddies of southern spain.

    Get PDF
    Made available in DSpace on 2017-11-22T23:22:21Z (GMT). No. of bitstreams: 1 2017MegiasetalGenomeAnnouncAMG501.pdf: 129512 bytes, checksum: a892743f5690be5ed2b37c2cfeeb6c35 (MD5) Previous issue date: 2017-11-22bitstream/item/167234/1/2017MegiasetalGenome-Announc-AMG501.pd

    Genome sequence of Pantoea sp. strain 1.19, isolated from rice rhizosphere, with the capacity to promote growth of legumes and nonlegumes.

    Get PDF
    Made available in DSpace on 2017-11-22T23:20:51Z (GMT). No. of bitstreams: 1 2017MegiasetalGenomeAnnouncPantoea1.19.pdf: 126531 bytes, checksum: 7cfdbca5f1de71fa233ed687cebf351f (MD5) Previous issue date: 2017-11-22bitstream/item/167212/1/2017MegiasetalGenomeAnnounc-Pantoea1.19.pd

    Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies

    Get PDF
    We compare the predictions of the SuperScaling model for charged current quasielastic muonic neutrino and antineutrino scattering from 12^{12}C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti-)neutrino cross sections relevant for the ν\nuSTORM facility.Comment: 14 pages, 7 figures; v2: small corrections in the text and two added references; version accepted for publication by Phys. Lett.

    Extensions of Superscaling from Relativistic Mean Field Theory: the SuSAv2 Model

    Get PDF
    We present a systematic analysis of the quasielastic scaling functions computed within the Relativistic Mean Field (RMF) Theory and we propose an extension of the SuperScaling Approach (SuSA) model based on these results. The main aim of this work is to develop a realistic and accurate phenomenological model (SuSAv2), which incorporates the different RMF effects in the longitudinal and transverse nuclear responses, as well as in the isovector and isoscalar channels. This provides a complete set of reference scaling functions to describe in a consistent way both (e,e)(e, e') processes and the neutrino/antineutrino-nucleus reactions in the quasielastic region. A comparison of the model predictions with electron and neutrino scattering data is presented.Comment: 19 pages, 24 figure

    Nuclear effects in neutrino and antineutrino CCQE scattering at MINERvA kinematics

    Get PDF
    We compare the charged-current quasielastic neutrino and antineutrino observables obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the Relativistic Mean Field approach, with the recent data published by the MINERvA Collaboration. Both models provide a good description of the data without the need of an ad hoc increase in the mass parameter in the axial-vector dipole form factor. Comparisons are also made with the MiniBooNE results where different conclusions are reached.Comment: 6 pages, 7 figures, Accepted for publication in Physical Review

    The Phase Structure of the Polyakov--Quark-Meson Model

    Full text link
    The relation between the deconfinement and chiral phase transition is explored in the framework of an Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N_f-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.Comment: 13 pages, 12 figures, RevTex4; discussion of mu-dependence extended, references added, version to be published in PR

    The frozen nucleon approximation in two-particle two-hole response functions

    Get PDF
    We present a fast and efficient method to compute the inclusive two-particle two-hole (2p-2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer qkFq\gtrsim k_F. The second approximation involves using in the "frozen" meson-exchange currents (MEC) an effective Δ\Delta-propagator averaged over the Fermi sea. Within the resulting "frozen nucleon approximation", the inclusive 2p-2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.Comment: 8 pages, 5 figures and 1 tabl

    Charged-current inclusive neutrino cross sections in the SuperScaling model including quasielastic, pion production and meson-exchange contributions

    Get PDF
    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where Eν0.8\langle E_\nu \rangle \sim 0.8 GeV, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ\Delta also appear to be playing a role. The results show that processes induced by two-body currents play a minor role at the kinematics considered.Comment: 10 pages, 7 figure
    corecore