980 research outputs found
Recommended from our members
Landslides on Ceres: Diversity and Geologic Context.
Landslides are among the most widespread geologic features on Ceres. Using data from Dawn's Framing Camera, landslides were previously classified based upon geomorphologic characteristics into one of three archetypal categories, Type 1(T1), Type 2 (T2), and Type 3 (T3). Due to their geologic context, variation in age, and physical characteristics, most landslides on Ceres are, however, intermediate in their morphology and physical properties between the archetypes of each landslide class. Here we describe the varied morphology of individual intermediate landslides, identify geologic controls that contribute to this variation, and provide first-order quantification of the physical properties of the continuum of Ceres's surface flows. These intermediate flows appear in varied settings and show a range of characteristics, including those found at contacts between craters, those having multiple trunks or lobes; showing characteristics of both T2 and T3 landslides; material slumping on crater rims; very small, ejecta-like flows; and those appearing inside of catenae. We suggest that while their morphologies can vary, the distribution and mechanical properties of intermediate landslides do not differ significantly from that of archetypal landslides, confirming a link between landslides and subsurface ice. We also find that most intermediate landslides are similar to Type 2 landslides and formed by shallow failure. Clusters of these features suggest ice enhancement near Juling, Kupalo and Urvara craters. Since the majority of Ceres's landslides fall in the intermediate landslide category, placing their attributes in context contributes to a better understanding of Ceres's shallow subsurface and the nature of ground ice
Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training.
OBJECTIVE: The hypothesis that the adaptation to endurance exercise training included a faster increase in blood flow at the onset of exercise was tested in 12 healthy young men who endurance-trained (ET) 2 h/day, for 10 days at 65% VO2 peak on a cycle ergometer, and in 11 non-training control (C) subjects.
METHODS: Blood flow was estimated from changes in femoral artery mean blood velocity (MBV) by pulsed Doppler. Beat-by-beat changes in cardiac output (CO) and mean arterial pressure (MAP) were obtained by impedance cardiography and a Finapres finger cuff, respectively. MBV, MAP and CO were measured at rest and during 5 min of dynamic knee extension exercise. Both legs worked alternately with 2 s raising and lowering a weight (15% maximal voluntary contraction) followed by 2 s rest while the other leg raised and lowered the weight.
RESULTS: In the ET group the time to 63% (T63%) of the approximately exponential increase in MBV following 10 days of training (8.6 +/- 1.2 s, mean +/- s.e.) was significantly faster than the Day 0 response (14.2 +/- 2.1 s, P \u3c 0.05). The T63% of femoral artery vascular conductance (VCfa) was also faster following 10 days of ET (9.4 +/- 0.9 s) versus Day 0 (16.0 +/- 2.5 s) (0.05). There was no change in the T63% of both MBV and VCfa for the C group. The kinetics of CO were not significantly affected by ET, but the amplitude of CO in the adaptive phase, and at steady state, were significantly greater (P \u3c 0.05) at Day 10 compared to Day 0 for the ET group with no change in the C group.
CONCLUSIONS: These data supported the hypothesis that endurance training resulted in faster adaptation of blood flow to exercising muscle, and further showed that this response occurred early in the training program
Critical analysis of cerebrovascular autoregulation during repeated head-up tilt.
BACKGROUND AND PURPOSE: Cerebrovascular autoregulation has been described with a phase lead of cerebral blood flow preceding changes in cerebral perfusion pressure (CPP), but there has been less focus on the effect of CPP on cerebral vascular resistance. We investigated these relations during spontaneous fluctuations (control) and repeated head-up tilt.
METHODS: Eight healthy adults were studied in supine rest and repeated tilt with 10-second supine, 10 seconds at 45 degrees head-up tilt for a total of 12 cycles. Cerebral blood flow was estimated from mean flow velocity (MFV) by transcranial Doppler ultrasound, CPP was estimated from corrected finger pressure (CPP(F)), and cerebrovascular resistance index (CVRi) was calculated in the supine position from CPP(F)/MFV. Gain and phase relations were assessed by cross-spectral analysis.
RESULTS: In the supine position, MFV preceded CPP(F), but changes in CVRi followed CPP(F). Gain and phase relations for CPP(F) as input and MFV as output were similar in supine and repeated tilt experiments. Thus, changes in cerebrovascular resistance must have had a similar pattern in the supine and tilt experiments.
CONCLUSIONS: Cerebrovascular autoregulation is achieved by changes in resistance in response to modulations in perfusion pressure whether spontaneous or induced by repeated tilt. The phase lead of MFV before CPP(F) is a mathematical and physiological consequence of the relation the input variable (CPP(F)) and the manipulated variable (cerebrovascular resistance) that should not be taken as an indication of independent control of cerebral blood flow
Structural basis for the binding of tryptophan-based motifs by ÎŽ-COP.
Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding ÎČγΎζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αÎČ'Δ-COP B-subcomplex. We present the structure of the C-terminal ÎŒ-homology domain of the yeast ÎŽ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP ÎŒ subunits to bind YxxΊ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to ÎŽ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian ÎŽ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that ÎŽ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.We should like to thank the beamline scientists at the Diamond Light Source and Mike Lewis (MRC LMB), Gerry Johnston (Dalhousie University), and Mark Rose (Princeton University) for helpful discussions and technical advice. RJS and DJO are funded by a Wellcome Trust fellowship to DJO (090909). PPP was funded by Canadian Institute of Health Research. RD acknowledges support from the DFG Excellence Cluster âInflammation and Interfacesâ (ECX306) and the University of LĂŒbeck. SMT and FMH acknowledge support from NIH (GM071574). PRE is funded by MRC grant U105178845This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.150618611
WISE-2005: prolongation of left ventricular pre-ejection period with 56 days head-down bed rest in women
This study tested the hypothesis that prolonged physical deconditioning affects the coupling of left ventricular depolarization to its ejection (the pre-ejection period, PEPi) and that this effect is minimized by exercise countermeasures. Following assignment to non-exercise (Control) and exercise groups (Exercise), 14 females performed 56 days of continuous head-down tilt bed rest. Measurements of the electrocardiogram (ECG) and stroke volume (Doppler ultrasound) during supine rest were obtained at baseline prior to (Pre) and after (Post) the head-down tilt bed rest (HDBR) period. Compared with Pre, the PEPi was increased following head-down tilt bed rest (main effect, P \u3c 0.005). This effect was most dominant in the Control group [Pre = 0.038 ± 0.06 s (s.d.) versus Post = 0.054 ± 0.011 s; P \u3c 0.001]. In the Exercise group, PEPi was 0.032 ± 0.005 s Pre and 0.038 ± 0.018 s Post; P= 0.08. Neither the QRS interval nor cardiac afterload was modified by head-down tilt bed rest in Control or Exercise groups. Low-dose isoprenaline infusion reversed the head-down tilt bed rest-induced delay in the PEPi. These results suggest that head-down tilt bed rest leads to a delayed onset of systolic ejection following left ventricular depolarization in a manner that is affected little by the exercise countermeasure but is related to Î-adrenergic pathways. The delayed onset of systole following head-down tilt bed rest appears to be related to mechanism(s) affecting contraction of the left ventricle rather than its depolarization. © 2010 The Authors. Journal compilation © 2010 The Physiological Society
Sustainable Management of Water Resources
The Dawn spacecraft arrived at dwarf planet Ceres in spring 2015 and imaged its surface from four successively lower polar orbits at ground sampling dimensions between âŒ1.3âŻkm/px and âŒ35âŻm/px. To understand the geological history of Ceres a mapping campaign was initiated to produce a set of 15 quadrangle-based geological maps using the highest-resolution Framing Camera imagery. Here we present the geological map of the Ac-10 Rongo Quadrangle, which is located at the equator encompassing the region from 22°N to 22°S and 288° to 360°E. The total relief within the quadrangle is 11.1âŻkm with altitudes ranging from about â7.3âŻkm to +3.8âŻkm. We identified nine geological units based on surface morphology and surface textural characteristics. The dominant and most widespread unit is the cratered terrain (crt) representing ancient reworked crustal material. Its consistent formation age across the quadrangle is 1.8âŻGa. Two edifices (unit th), Ahuna Mons and an unnamed tholus within Begbalel Crater, are interpreted to be of (cryo)volcanic origin. The southwest portion of the quadrangle is dominated by ejecta material (Ye) emplaced during the formation of the 260-km diameter Yalode impact basin at about 580 Ma. Rayed crater ejecta material (cr) is dominant in the eastern part of the quadrangle but also occurs in isolated patches up to a distance of 455âŻkm from the 34âŻkm diameter source crater Haulani. The remaining five geological units also represent impact crater materials: degraded rim (crdeg), bright crater (cb), hummocky floor (cfh), talus (ta), and crater (c) materials. Widespread Yalode and Haulani ejecta materials can potentially be utilised as stratigraphic markers. Therefore, it is essential to consistently map their full areal extent and to date their formations using impact crater statistics
Feminist phenomenology and the woman in the running body
Modern phenomenology, with its roots in Husserlian philosophy, has been taken up and utilised in a myriad of ways within different disciplines, but until recently has remained relatively under-used within sports studies. A corpus of sociological-phenomenological work is now beginning to develop in this domain, alongside a longer standing literature in feminist phenomenology. These specific social-phenomenological forms explore the situatedness of lived-body experience within a particular social structure. After providing a brief overview of key strands of phenomenology, this article considers some of the ways in which sociological, and particularly feminist phenomenology, might be used to analyse female sporting embodiment. For illustrative purposes, data from an autophenomenographic project on female distance running are also included, in order briefly to demonstrate the application of phenomenology within sociology, as both theoretical framework and methodological approach
- âŠ