330 research outputs found

    A hydrophobic platform as a mechanistically relevant transition state stabilising factor appears to be present in the active centre of all glycoside hydrolases

    Get PDF
    AbstractAn in silico survey of the −1 subsite of all known 3D-structures of O-glycoside hydrolases containing a suitably positioned ligand has led to the recognition – apparently without exceptions – of a transition state stabilising hydrophobic platform which is complementary to a crucial hydrophobic patch of the ligand. This platform is family-specific and highly conserved. A comprehensive list is given with examples of enzymes belonging to 33 different families. Several typical constellations of platform – protein residues are described

    Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model

    Get PDF
    Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequentlyoccurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternatives toautografts, but failed to bridge gaps exceeding 3 cm in humans. Internal NGC guidance cues like microfibresare believed to enhance hollow NGCs by giving additional physical support for directed regeneration of Schwann cellsand axons. In this study, we report a new 3D in vitro model that allows the evaluation of different intraluminal fibrescaffolds inside a complete NGC. The performance of electrospun polycaprolactone (PCL) microfibres inside 5 mmlong polyethylene glycol (PEG) conduits were investigated in neuronal cell and dorsal root ganglion (DRG) cultures invitro. Z-stack confocal microscopy revealed the aligned orientation of neuronal cells along the fibres throughout thewhole NGC length and depth. The number of living cells in the centre of the scaffold was not significantly different tothe tissue culture plastic (TCP) control. For ex vivo analysis, DRGs were placed on top of fibre-filled NGCs to simulatethe proximal nerve stump. In 21 days of culture, Schwann cells and axons infiltrated the conduits along the microfibreswith 2.2 ± 0.37 mm and 2.1 ± 0.33 mm, respectively. We conclude that this in vitro model can help define internal NGCscaffolds in the future by comparing different fibre materials, composites and dimensions in one setup prior to animaltesting

    Elastomeric, bioadhesive and pH-responsive amphiphilic copolymers based on direct crosslinking of poly(glycerol sebacate)-co-polyethylene glycol

    Get PDF
    Poly(glycerol sebacate) (PGS), a synthetic biorubber, is characterised by its biocompatibility, high elasticity and tunable mechanical properties; however, its inherent hydrophobicity and insolubility in water make it unsuitable for use in advanced biomaterials like hydrogels fabrication. Here, we developed new hydrophilic PGS-based copolymers that enable hydrogel formation through use of two different types of polyethylene glycol (PEG), polyethylene glycol (PEG2) or glycerol ethoxylate (PEG3), combined at different ratios. A two-step polycondensation reaction was used to produce poly(glycerol sebacate)-co-polyethylene glycol (PGS-co-PEG) copolymers that were then crosslinked thermally without the use of initiators or crosslinkers, resulting in PGS-co-PEG2 and PGS-co-PEG3 amphiphilic polymers. It has been illustrated that the properties of PGS-co-PEG copolymers can be controlled by altering the type and amount of PEG. PGS-co-PEG copolymers containing PEG ≥ 40% showed high swelling, flexibility, stretching, bioadhesion and biocompatibility, and good enzymatic degradation and mechanical properties. Also, the addition of PEG created hydrogels that demonstrated pH-responsive behaviours, which can be used for bioapplications requiring responding to physicochemical dynamics. Interestingly, PGS-co-40PEG2 and PGS-co-60PEG3 had the highest shear strengths, 340.4 ± 49.7 kPa and 336.0 ± 35.1 kPa, and these are within the range of commercially available sealants or bioglues. Due to the versatile multifunctionalities of these new copolymer hydrogels, they can have great potential in soft tissue engineering and biomedicine

    The importance of mimicking dermal-epidermal junction for skin tissue engineering : a review

    Get PDF
    There is a distinct boundary between the dermis and epidermis in the human skin called the basement membrane, a dense collagen network that creates undulations of the dermal–epidermal junction (DEJ). The DEJ plays multiple roles in skin homeostasis and function, namely, enhancing the adhesion and physical interlock of the layers, creating niches for epidermal stem cells, regulating the cellular microenvironment, and providing a physical boundary layer between fibroblasts and keratinocytes. However, the primary role of the DEJ has been determined as skin integrity; there are still aspects of it that are poorly investigated. Tissue engineering (TE) has evolved promising skin regeneration strategies and already developed TE scaffolds for clinical use. However, the currently available skin TE equivalents neglect to replicate the DEJ anatomical structures. The emergent ability to produce increasingly complex scaffolds for skin TE will enable the development of closer physical and physiological mimics to natural skin; it also allows researchers to study the DEJ effect on cell function. Few studies have created patterned substrates that could mimic the human DEJ to explore their significance. Here, we first review the DEJ roles and then critically discuss the TE strategies to create the DEJ undulating structure and their effects. New approaches in this field could be instrumental for improving bioengineered skin substitutes, creating 3D engineered skin, identifying pathological mechanisms, and producing and screening drugs

    Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: simulation & experiment for polymers

    Get PDF
    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast

    Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Get PDF
    AbstractRecently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contras

    Assessment of the angiogenic potential of 2-deoxy-D-ribose using a novel in vitro 3D dynamic model in comparison with established in vitro assays

    Get PDF
    Angiogenesis is a highly ordered physiological process regulated by the interaction of endothelial cells with an extensive variety of growth factors, extracellular matrix components and mechanical stimuli. One of the most important challenges in tissue engineering is the rapid neovascularization of constructs to ensure their survival after transplantation. To achieve this, the use of pro-angiogenic agents is a widely accepted approach. The study of angiogenesis has gained momentum over the last two decades. Although there are various in vitro, ex vivo, and in vivo angiogenesis models that enable testing of newly discovered pro-angiogenic agents, the problem with researching angiogenesis is the choice of the most appropriate assay. In vivo assays are the most representative and reliable models, but they are expensive, time-consuming and can cause ethical concerns whereas in vitro assays are relatively inexpensive, practical, and reproducible, but they are usually lack of enabling the study of more than one aspect of angiogenesis, and they do not fully represent the complexity of physiological angiogenesis. Therefore, there is a need for the development of an angiogenesis model that allows the study of angiogenesis under physiologically more relevant, dynamic conditions without causing ethical concerns. Accordingly, in this study, we developed 3D in vitro dynamic angiogenesis model, and we tested the angiogenic potential of 2-deoxy-D-ribose (2dDR) in comparison with vascular endothelial growth factor (VEGF) using newly developed in vitro 3D dynamic model and well-established in vitro models. Our results obtained using conventional in vitro assays demonstrated that 2dDR promoted proliferation, migration and tube formation of human aortic endothelial cells (HAECs) in a dose-dependent manner. Then, the angiogenic activity of 2dDR was further assessed using the newly developed 3D in vitro model, which enabled the monitoring of cell proliferation and infiltration simultaneously under dynamic conditions. Our results showed that the administration of 2dDR and VEGF significantly enhanced the outgrowth of HAECs and the cellular density under either static or dynamic conditions

    Separating topographical and chemical analysis of nanostructure of polymer composite in low voltage SEM

    Get PDF
    The possibility of separating the topographical and chemical information in a polymer nano-composite using low-voltage SEM imaging is demonstrated, when images are acquired with a Concentric Backscattered (CBS) detector. This separation of chemical and topographical information is based on the different angular distribution of electron scattering which were calculated using a Monte Carlo simulation. The simulation based on angular restricted detection was applied to a semi-branched PNIPAM/PEGDA interpenetration network for which a linear relationship of topography SEM contrast and feature height data was observed
    • …
    corecore