414 research outputs found
Galaxy Zoo: Disentangling the Environmental Dependence of Morphology and Colour
We analyze the environmental dependence of galaxy morphology and colour with
two-point clustering statistics, using data from the Galaxy Zoo, the largest
sample of visually classified morphologies yet compiled, extracted from the
Sloan Digital Sky Survey. We present two-point correlation functions of spiral
and early-type galaxies, and we quantify the correlation between morphology and
environment with marked correlation functions. These yield clear and precise
environmental trends across a wide range of scales, analogous to similar
measurements with galaxy colours, indicating that the Galaxy Zoo
classifications themselves are very precise. We measure morphology marked
correlation functions at fixed colour and find that they are relatively weak,
with the only residual correlation being that of red galaxies at small scales,
indicating a morphology gradient within haloes for red galaxies. At fixed
morphology, we find that the environmental dependence of colour remains strong,
and these correlations remain for fixed morphology \textit{and} luminosity. An
implication of this is that much of the morphology--density relation is due to
the relation between colour and density. Our results also have implications for
galaxy evolution: the morphological transformation of galaxies is usually
accompanied by a colour transformation, but not necessarily vice versa. A
spiral galaxy may move onto the red sequence of the colour-magnitude diagram
without quickly becoming an early-type. We analyze the significant population
of red spiral galaxies, and present evidence that they tend to be located in
moderately dense environments and are often satellite galaxies in the outskirts
of haloes. Finally, we combine our results to argue that central and satellite
galaxies tend to follow different evolutionary paths.Comment: 19 pages, 18 figures. Accepted for publication in MNRA
Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies
‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.15383.xWe investigate a class of rapidly growing emission line galaxies, known as 'Green Peas', first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in Sloan Digital Sky Survey imaging. Their appearance is due to very strong optical emission lines, namely [O iii]λ5007 Å, with an unusually large equivalent width of up to ∼1000 Å. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some active galactic nuclei interlopers including eight newly discovered narrow-line Seyfert 1 galaxies. The star-forming Peas are low-mass galaxies (M∼ 108.5–1010 M⊙) with high star formation rates (∼10 M⊙ yr−1) , low metallicities (log[O/H]+ 12 ∼ 8.7) and low reddening [ E(B−V) ≤ 0.25 ] and they reside in low-density environments. They have some of the highest specific star formation rates (up to ∼10−8 yr−1 ) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myr. The few star-forming Peas with Hubble Space Telescope imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to luminous blue compact galaxies. They are also similar to high-redshift ultraviolet-luminous galaxies, e.g. Lyman-break galaxies and Lyα emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe.Peer reviewe
Galaxy Zoo: The large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey
We re-examine the evidence for a violation of large-scale statistical
isotropy in the distribution of projected spin vectors of spiral galaxies. We
have a sample of spiral galaxies from the Sloan Digital Sky
Survey, with their line of sight spin direction confidently classified by
members of the public through the online project Galaxy Zoo. After establishing
and correcting for a certain level of bias in our handedness results we find
the winding sense of the galaxies to be consistent with statistical isotropy.
In particular we find no significant dipole signal, and thus no evidence for
overall preferred handedness of the Universe. We compare this result to those
of other authors and conclude that these may also be affected and explained by
a bias effect.Comment: Accepted for publication in MNRAS. 8 pages, 5 figure
Classification of cancer cell lines using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and statistical analysis
Over the past decade, matrix-assisted laser desorption/ionization time‑of‑flight mass spectrometry (MALDI‑TOF MS) has been established as a valuable platform for microbial identification, and it is also frequently applied in biology and clinical studies to identify new markers expressed in pathological conditions. The aim of the present study was to assess the potential of using this approach for the classification of cancer cell lines as a quantifiable method for the proteomic profiling of cellular organelles. Intact protein extracts isolated from different tumor cell lines (human and murine) were analyzed using MALDI‑TOF MS and the obtained mass lists were processed using principle component analysis (PCA) within Bruker Biotyper® software. Furthermore, reference spectra were created for each cell line and were used for classification. Based on the intact protein profiles, we were able to differentiate and classify six cancer cell lines: two murine melanoma (B16‑F0 and B164A5), one human melanoma (A375), two human breast carcinoma (MCF7 and MDA‑MB‑231) and one human liver carcinoma (HepG2). The cell lines were classified according to cancer type and the species they originated from, as well as by their metastatic potential, offering the possibility to differentiate non‑invasive from invasive cells. The obtained results pave the way for developing a broad‑based strategy for the identification and classification of cancer cell
Detection of two QTL on chicken chromosome 14 for keyhole lymphet heamocyanin
A keyhole lymphet heamocyanin is an antigen which triggers Th1 type of immune response. A QTL for a primary immune response towards keyhole lymphet heamocyanin has been detected on chicken chromosome 14 in three populations. The results from the most recent population were inconsistent and varied depending on the applied QTL detection model. The major goal of the current study was the reanalysis of this data using a 2 QTL model. Additionally, in order to provide more accurate estimates of QTL effects and positions, epistasis between the QTL was considered as a potential important contributor to quantitative traits. Four statistical models were assumed: M1: A model assuming marginal additive effects of two QTL; M2: A model assuming marginal and epistatic additive effects of two QTL; M3: A model assuming marginal additive and dominance effects of two QTL; M4: A model assuming marginal additive and dominance effects of two QTL and all possible pairwise epistases. Two QTL with significant additive and dominance effects were detected on chicken chromosome 14 using model M3. One QTL was detected at 63 cM between MCW0123 and ROS0005, another at 76 cM between ROS0005 and MCW0225/NTN2Lsts1 (FDR = 0.0051). Modelling only additive effects resulted in a significantly worse fit. On the other hand, including epistatic effects did not improve fit significantly. The current study confirms previous reports of the QTL location on GGA14. A notable finding of this study is recognition of two closely related QTL for a keyhole lymphet heamocyanin response at the distal part of chicken chromosome 14
Galaxy Zoo: Reproducing Galaxy Morphologies Via Machine Learning
We present morphological classifications obtained using machine learning for
objects in SDSS DR6 that have been classified by Galaxy Zoo into three classes,
namely early types, spirals and point sources/artifacts. An artificial neural
network is trained on a subset of objects classified by the human eye and we
test whether the machine learning algorithm can reproduce the human
classifications for the rest of the sample. We find that the success of the
neural network in matching the human classifications depends crucially on the
set of input parameters chosen for the machine-learning algorithm. The colours
and parameters associated with profile-fitting are reasonable in separating the
objects into three classes. However, these results are considerably improved
when adding adaptive shape parameters as well as concentration and texture. The
adaptive moments, concentration and texture parameters alone cannot distinguish
between early type galaxies and the point sources/artifacts. Using a set of
twelve parameters, the neural network is able to reproduce the human
classifications to better than 90% for all three morphological classes. We find
that using a training set that is incomplete in magnitude does not degrade our
results given our particular choice of the input parameters to the network. We
conclude that it is promising to use machine- learning algorithms to perform
morphological classification for the next generation of wide-field imaging
surveys and that the Galaxy Zoo catalogue provides an invaluable training set
for such purposes.Comment: 13 Pages, 5 figures, 10 tables. Accepted for publication in MNRAS.
Revised to match accepted version
Galaxy Zoo 1 : Data Release of Morphological Classifications for nearly 900,000 galaxies
Morphology is a powerful indicator of a galaxy's dynamical and merger
history. It is strongly correlated with many physical parameters, including
mass, star formation history and the distribution of mass. The Galaxy Zoo
project collected simple morphological classifications of nearly 900,000
galaxies drawn from the Sloan Digital Sky Survey, contributed by hundreds of
thousands of volunteers. This large number of classifications allows us to
exclude classifier error, and measure the influence of subtle biases inherent
in morphological classification. This paper presents the data collected by the
project, alongside measures of classification accuracy and bias. The data are
now publicly available and full catalogues can be downloaded in electronic
format from http://data.galaxyzoo.org.Comment: Accepted by MNRAS, 14 pages. Updated to match final version; problem
with table 7 header fixed. Full tables available at http://data.galaxyzoo.or
Postpartum microangiopathic disorders: A case report and review of the literature
Introduction Thrombotic microangiopathic disorders (TMA's) consist of five overlapping disorders: severe pre-eclampsia; HELLP (haemolysis, elevated liver enzyme, and low platelet count) syndrome; thrombotic thrombocytopenic purpura (TTP); haemolytic-uremic syndrome (HUS) a
Galaxy Zoo: Dust in Spirals
We investigate the effect of dust on spiral galaxies by measuring the
inclination-dependence of optical colours for 24,276 well-resolved SDSS
galaxies visually classified in Galaxy Zoo. We find clear trends of reddening
with inclination which imply a total extinction from face-on to edge-on of 0.7,
0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into
"bulgy" (early-type) and "disky" (late-type) spirals using the SDSS fracdeV (or
f_DeV) parameter and show that the average face-on colour of "bulgy" spirals is
redder than the average edge-on colour of "disky" spirals. This shows that the
observed optical colour of a spiral galaxy is determined almost equally by the
spiral type (via the bulge-disk ratio and stellar populations), and reddening
due to dust. We find that both luminosity and spiral type affect the total
amount of extinction, with "disky" spirals at M_r ~ -21.5 mags having the most
reddening. This decrease of reddening for the most luminous spirals has not
been observed before and may be related to their lower levels of recent star
formation. We compare our results with the latest dust attenuation models of
Tuffs et al. We find that the model reproduces the observed trends reasonably
well but overpredicts the amount of u-band attenuation in edge-on galaxies. We
end by discussing the effects of dust on large galaxy surveys and emphasize
that these effects will become important as we push to higher precision
measurements of galaxy properties and their clustering.Comment: MNRAS in press. 25 pages, 22 figures (including an abstract comparing
GZ classifications with common automated methods for selecting disk/early
type galaxies in SDSS data). v2 corrects typos found in proof
Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies
We investigate a class of rapidly growing emission line galaxies, known as ‘Green Peas’, first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in Sloan Digital Sky Survey imaging. Their appearance is due to very strong optical emission lines, namely [O iii]λ5007 Å, with an unusually large equivalent width of up to ∼1000 Å. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some active galactic nuclei interlopers including eight newly discovered narrow-line Seyfert 1 galaxies. The star-forming Peas are low-mass galaxies (M∼ 108.5–1010 M⊙) with high star formation rates (∼10 M⊙ yr−1), low metallicities (log[O/H]+ 12 ∼ 8.7) and low reddening [E(B−V) ≤ 0.25] and they reside in low-density environments. They have some of the highest specific star formation rates (up to ∼10−8 yr−1) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myr. The few star-forming Peas with Hubble Space Telescope imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to luminous blue compact galaxies. They are also similar to high-redshift ultraviolet-luminous galaxies, e.g. Lyman-break galaxies and Lyα emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe
- …