244 research outputs found

    Five narratives of religious itinerary from the Bosomefi and Anowa families of Ian Oguaa in Fanteland, Ghana : a theological exploration of the affinity between the world-view of the Christian scriptures and the African primal world-view.

    Get PDF
    Thesis (M.Th.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.The purpose of the study is to show the presence of Christ in Fanteland by treating five Fante ancestral and current narratives as analogues of Genesis XIV and interpreting the resulting interpenetrating Scripture and Fante narratives sensus plenior in the manner of Hebrews VII for Fante Christians, revealing the hidden presence of Christ in them. This is made possible by a postulate of an affinity between the Hebrew world view and that of the Fante. What is considered right behaviour in Fanteland is also resonant with the ethics in Hebrews. A section on ethics arising out of the presence of Christ in the narrative follows in each case. The first chapter is introductory giving the aim and objectives of the study the justification, scope and limitations. This is followed by the intellectual framework from secondary sources and the methodology used. In Chapter II there is a comparison of the world view of Hebrews and of Fanteland with a view to seeing their affinity. Chapters III -V give the literary and historical background to each narrative, the narratives themselves and a theological and ethical meditation. In conclusion the fruit of these meditations is summarized and an evaluation is made

    The Evolutionary Dynamics of a Rapidly Mutating Virus within and between Hosts: The Case of Hepatitis C Virus

    Get PDF
    Many pathogens associated with chronic infections evolve so rapidly that strains found late in an infection have little in common with the initial strain. This raises questions at different levels of analysis because rapid within-host evolution affects the course of an infection, but it can also affect the possibility for natural selection to act at the between-host level. We present a nested approach that incorporates within-host evolutionary dynamics of a rapidly mutating virus (hepatitis C virus) targeted by a cellular cross-reactive immune response, into an epidemiological perspective. The viral trait we follow is the replication rate of the strain initiating the infection. We find that, even for rapidly evolving viruses, the replication rate of the initial strain has a strong effect on the fitness of an infection. Moreover, infections caused by slowly replicating viruses have the highest infection fitness (i.e., lead to more secondary infections), but strains with higher replication rates tend to dominate within a host in the long-term. We also study the effect of cross-reactive immunity and viral mutation rate on infection life history traits. For instance, because of the stochastic nature of our approach, we can identify factors affecting the outcome of the infection (acute or chronic infections). Finally, we show that anti-viral treatments modify the value of the optimal initial replication rate and that the timing of the treatment administration can have public health consequences due to within-host evolution. Our results support the idea that natural selection can act on the replication rate of rapidly evolving viruses at the between-host level. It also provides a mechanistic description of within-host constraints, such as cross-reactive immunity, and shows how these constraints affect the infection fitness. This model raises questions that can be tested experimentally and underlines the necessity to consider the evolution of quantitative traits to understand the outcome and the fitness of an infection

    Limited role of spatial selfstructuring in emergent trade-offs during pathogen evolution

    Get PDF
    Pathogen transmission and virulence are main evolutionary variables broadly assumed to be linked through trade-offs. In well-mixed populations, these trade-offs are often ascribed to physiological restrictions, while populations with spatial self-structuring might evolve emergent trade-offs. Here, we reexamine a spatially-explicit, SIR model of the latter kind proposed by Ballegooijen and Boerlijst with the aim of characterising the mechanisms causing the emergence of the trade-off and its structural robustness. Using invadability criteria, we establish the conditions under which an evolutionary feedback between transmission and virulence mediated by pattern formation can poise the system to a critical boundary separating a disordered state (without emergent trade-off) from a self-structured phase (where the trade-off emerges), and analytically calculate the functional shape of the boundary in a certain approximation. Beyond evolutionary parameters, the success of an invasion depends on the size and spatial structure of the invading and invaded populations. Spatial self-structuring is often destroyed when hosts are mobile, changing the evolutionary dynamics to those of a well-mixed population. In a metapopulation scenario, the systematic extinction of the pathogen in the disordered phase may counteract the disruptive effect of host mobility, favour pattern formation and therefore recover the emergent trade-off.This work has been supported by the Spanish Ministerio de Economía, Industria y Competitividad and FEDER funds of the EU through grants ViralESS (FIS2014-57686-P and FIS2017-84256-P). The internship of VB was financed by the Severo Ochoa Centers of Excellence Program (SEV-2013-0347)

    InP based lasers and optical amplifiers with wire-/dot-like active regions

    Get PDF
    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire-/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 and 1.65 mu m. In a brief overview different technological approaches will be discussed, while in the main part the current status and recent results of quantum-dash lasers are reported. This includes topics like dash formation and material growth, device performance of lasers and optical amplifiers, static and dynamic properties and fundamental material and device modelin

    The evolution of sex-specific virulence in infectious diseases

    Get PDF
    Fatality rates of infectious diseases are often higher in men than women. Although this difference is often attributed to a stronger immune response in women, we show that differences in the transmission routes that the sexes provide can result in evolution favouring pathogens with sex-specific virulence. Because women can transmit pathogens during pregnancy, birth or breast-feeding, pathogens adapt, evolving lower virulence in women. This can resolve the long-standing puzzle on progression from Human T-cell Lymphotropic Virus Type 1 (HTLV-1) infection to lethal Adult T-cell Leukaemia (ATL); a progression that is more likely in Japanese men than women, while it is equally likely in Caribbean women and men. We argue that breastfeeding, being more prolonged in Japan than in the Caribbean, may have driven the difference in virulence between the two populations. Our finding signifies the importance of investigating the differences in genetic expression profile of pathogens in males and females

    Modelling Stochastic and Deterministic Behaviours in Virus Infection Dynamics

    Get PDF
    Many human infections with viruses such as human immunodeficiency virus type 1 (HIV--1) are characterized by low numbers of founder viruses for which the random effects and discrete nature of populations have a strong effect on the dynamics, e.g., extinction versus spread. It remains to be established whether HIV transmission is a stochastic process on the whole. In this study, we consider the simplest (so-called, 'consensus') virus dynamics model and develop a computational methodology for building an equivalent stochastic model based on Markov Chain accounting for random interactions between the components. The model is used to study the evolution of the probability densities for the virus and target cell populations. It predicts the probability of infection spread as a function of the number of the transmitted viruses. A hybrid algorithm is suggested to compute efficiently the dynamics in state space domain characterized by a mix of small and large species densities

    Red Queen Dynamics with Non-Standard Fitness Interactions

    Get PDF
    Antagonistic coevolution between hosts and parasites can involve rapid fluctuations of genotype frequencies that are known as Red Queen dynamics. Under such dynamics, recombination in the hosts may be advantageous because genetic shuffling can quickly produce disproportionately fit offspring (the Red Queen hypothesis). Previous models investigating these dynamics have assumed rather simple models of genetic interactions between hosts and parasites. Here, we assess the robustness of earlier theoretical predictions about the Red Queen with respect to the underlying host-parasite interactions. To this end, we created large numbers of random interaction matrices, analysed the resulting dynamics through simulation, and ascertained whether recombination was favoured or disfavoured. We observed Red Queen dynamics in many of our simulations provided the interaction matrices exhibited sufficient ‘antagonicity’. In agreement with previous studies, strong selection on either hosts or parasites favours selection for increased recombination. However, fast changes in the sign of linkage disequilibrium or epistasis were only infrequently observed and do not appear to be a necessary condition for the Red Queen hypothesis to work. Indeed, recombination was often favoured even though the linkage disequilibrium remained of constant sign throughout the simulations. We conclude that Red Queen-type dynamics involving persistent fluctuations in host and parasite genotype frequencies appear to not be an artefact of specific assumptions about host-parasite fitness interactions, but emerge readily with the general interactions studied here. Our results also indicate that although recombination is often favoured, some of the factors previously thought to be important in this process such as linkage disequilibrium fluctuations need to be reassessed when fitness interactions between hosts and parasites are complex

    Antigenic Diversity, Transmission Mechanisms, and the Evolution of Pathogens

    Get PDF
    Pathogens have evolved diverse strategies to maximize their transmission fitness. Here we investigate these strategies for directly transmitted pathogens using mathematical models of disease pathogenesis and transmission, modeling fitness as a function of within- and between-host pathogen dynamics. The within-host model includes realistic constraints on pathogen replication via resource depletion and cross-immunity between pathogen strains. We find three distinct types of infection emerge as maxima in the fitness landscape, each characterized by particular within-host dynamics, host population contact network structure, and transmission mode. These three infection types are associated with distinct non-overlapping ranges of levels of antigenic diversity, and well-defined patterns of within-host dynamics and between-host transmissibility. Fitness, quantified by the basic reproduction number, also falls within distinct ranges for each infection type. Every type is optimal for certain contact structures over a range of contact rates. Sexually transmitted infections and childhood diseases are identified as exemplar types for low and high contact rates, respectively. This work generates a plausible mechanistic hypothesis for the observed tradeoff between pathogen transmissibility and antigenic diversity, and shows how different classes of pathogens arise evolutionarily as fitness optima for different contact network structures and host contact rates

    Within-Host Dynamics of Multi-Species Infections: Facilitation, Competition and Virulence

    Get PDF
    Host individuals are often infected with more than one parasite species (parasites defined broadly, to include viruses and bacteria). Yet, research in infection biology is dominated by studies on single-parasite infections. A focus on single-parasite infections is justified if the interactions among parasites are additive, however increasing evidence points to non-additive interactions being the norm. Here we review this evidence and theoretically explore the implications of non-additive interactions between co-infecting parasites. We use classic Lotka-Volterra two-species competition equations to investigate the within-host dynamical consequences of various mixes of competition and facilitation between a pair of co-infecting species. We then consider the implications of these dynamics for the virulence (damage to host) of co-infections and consequent evolution of parasite strategies of exploitation. We find that whereas one-way facilitation poses some increased virulence risk, reciprocal facilitation presents a qualitatively distinct destabilization of within-host dynamics and the greatest risk of severe disease
    • …
    corecore