14 research outputs found

    A method to include in lca road traffic noise and its health effects

    Get PDF
    Background, Aims and Scope: Transport noise represents an environmental problem that is perceived by humans more directly than the usual chemical emissions or resource uses. In spite of this, traditional LCA applications still exclude noise — probably due to the unavailability of an appropriate assessment method. In order to fill the gap, this article presents a study proposing a new computational procedure for the determination of health impairment resulting from noise emissions of road vehicles. Main Features: The magnitude of health impairment due to noise is determined separately for each vehicle class (cars, trucks,..) and is calculated per vehicle-kilometre driven during the day or at nighttime on the Swiss road network. This health impairment is expressed in cases of sleep disturbance or communication disturbance, and furthermore aggregated in DALY (Disability Adjusted Life Years) units representing the number, duration and severity of the health cases. The method is modelling the full cause-effect chain from the noise emissions of a single vehicle up to the health damage. As in some other modern concepts of environmental damage assessment, the analysis is subdivided into the four modules of fate analysis, exposure analysis, effect analysis and damage analysis. The fate analysis yielding the noise level increment due to an additional road transport over a given distance is conducted for transports with known or with unknown routing, the latter case being more important in LCA practice. The current number of persons subject to specific background levels of noise is determined on the basis of the road traffic noise model, LUK, developed by the Swiss canton of Zurich. The number of additional cases of health impairment due to incremental noise is calculated with data out of the Swiss Noise Study 90. An assessment of the severity of sleep disturbance and communication disturbance, in comparison to other types of health impairment, was performed by a panel consisting of physicians experienced in the field of severity weighting of disabilities. Results and Discussion: The quantities of health cases and of DALY units are given per 1′000 truck or car kilometres on Swiss roads, and the range of the confidence interval is estimated. A plausibility check is made by a quantitative comparison of the results with health damage due to traffic accidents in Switzerland, and with health damage due to traffic noise in the Netherlands. Conclusions and Oudook: The method is ready for use in LCA practice. However, the temporary solution for transports outside of Switzerland should be replaced by feeding country specific data into the fate and exposure model. Further, a comparable assessment for rail transport would facilitate decisions on road or rail transport. A decisive element of transport noise assessment is the availability of robust links between noise level and medical conditions. Whilst the number of the corresponding studies is sufficiendy large, a design for better pooling of study results is desirabl

    The ECO-indicator 98 explained

    Get PDF
    The Eco-Indicator 98 project aims at a complete revision of the Eco-Indicator 95 methodology. Like its predecessor, the target is to develop single scores for designers. The method now includes resources and land use. Important improvements are: the use of fate analysis, the much better definition of the damage categories concerned with human health and ecosystem health, using the PAF (Potentially Affected Fraction) and DALY (Disability Adjusted Life Years) concept, and a completely new approach to modelling resources and land use. Perhaps the most fundamental improvement is the management system for value choices. The result of this management system is that there will be three instead of one indicator. Each version is based on a different cultural perspective. The method should be updated continuously. It is proposed to set up an independent organisation to guide this future developmen

    Key Elements in a Framework for Land Use Impact Assessment Within LCA (11 pp)

    Get PDF
    Background, Aim and Scope: Land use by agriculture, forestry, mining, house-building or industry leads to substantial impacts, particularly on biodiversity and on soil quality as a supplier of life support functions. Unfortunately there is no widely accepted assessment method so far for land use impacts. This paper presents an attempt, within the UNEP-SETAC Life Cycle Initiative, to provide a framework for the Life Cycle Impact Assessment (LCIA) of land use. Materials and Methods: This framework builds from previous documents, particularly the SETAC book on LCIA (Lindeijer et al. 2002), developing essential issues such as the reference for occupation impacts; the impact pathways to be included in the analysis; the units of measure in the impact mechanism (land use interventions to impacts); the ways to deal with impacts in the future; and bio-geographical differentiation. Results: The paper describes the selected impact pathways, linking the land use elementary flows (occupation; transformation) and parameters (intensity) registered in the inventory (LCI) to the midpoint impact indicators and to the relevant damage categories (natural environment and natural resources). An impact occurs when the land properties are modified (transformation) and also when the current man-made properties are maintained (occupation). Discussion: The size of impact is the difference between the effect on land quality from the studied case of land use and a suitable reference land use on the same area (dynamic reference situation). The impact depends not only on the type of land use (including coverage and intensity) but is also heavily influenced by the bio-geographical conditions of the area. The time lag between the land use intervention and the impact may be large; thus land use impacts should be calculated over a reasonable time period after the actual land use finishes, at least until a new steady state in land quality is reached. Conclusions: Guidance is provided on the definition of the dynamic reference situation and on methods and time frame to assess the impacts occurring after the actual land use. Including the occupation impacts acknowledges that humans are not the sole users of land. Recommendations and Perspectives: The main damages affected by land use that should be considered by any method to assess land use impacts in LCIA are: biodiversity (existence value); biotic production potential (including soil fertility and use value of biodiversity); ecological soil quality (including life support functions of soil other than biotic production potential). Bio-geographical differentiation is required for land use impacts, because the same intervention may have different consequences depending on the sensitivity and inherent land quality of the environment where it occurs. For the moment, an indication of how such task could be done and likely bio-geographical parameters to be considered are suggested. The recommendation of indicators for the suggested impact categories is a matter of future researc

    UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA

    Get PDF
    Purpose As a consequence of the multi-functionality of land, the impact assessment of land use in Life Cycle Impact Assessment requires the modelling of several impact pathways covering biodiversity and ecosystem services. To provide consistency amongst these separate impact pathways, general principles for their modelling are provided in this paper. These are refinements to the principles that have already been proposed in publications by the UNEP-SETAC Life Cycle Initiative. In particular, this paper addresses the calculation of land use interventions and land use impacts, the issue of impact reversibility, the spatial and temporal distribution of such impacts and the assessment of absolute or relative ecosystem quality changes. Based on this, we propose a guideline to build methods for land use impact assessment in Life Cycle Assessment (LCA). Results Recommendations are given for the development of new characterization models and for which a series of key elements should explicitly be stated, such as the modelled land use impact pathways, the land use/cover typology covered, the level of biogeographical differentiation used for the characterization factors, the reference land use situation used and if relative or absolute quality changes are used to calculate land use impacts. Moreover, for an application of the characterisation factors (CFs) in an LCA study, data collection should be transparent with respect to the data input required from the land use inventory and the regeneration times. Indications on how generic CFs can be used for the background system as well as how spatial-based CFs can be calculated for the foreground system in a specific LCA study and how land use change is to be allocated should be detailed. Finally, it becomes necessary to justify the modelling period for which land use impacts of land transformation and occupation are calculated and how uncertainty is accounted for. Discussion The presented guideline is based on a number of assumptions: Discrete land use types are sufficient for an assessment of land use impacts; ecosystem quality remains constant over time of occupation; time and area of occupation are substitutable; transformation time is Negligible; regeneration is linear and independent from land use history and landscape configuration; biodiversity and multiple ecosystem services are independent; the ecological impact is linearly increasing with the intervention; and there is no interaction between land use and other drivers such as climate change. These assumptions might influence the results of land use Life Cycle Impact Assessment and need to be critically reflected. Conclusions and recommendations In this and the other papers of the special issue, we presented the principles and recommendations for the calculation of land use impacts on biodiversity and ecosystem services on a global scale. In the framework of LCA, they are mainly used for the Assessment of land use impacts in the background system. The main areas for further development are the link to regional ecological models running in the foreground system, relative weighting of the ecosystem services midpoints and indirect land use.Fil: Koellner, Thomas . University of Bayreuth. Faculty of Biology, Chemistry and Geosciences; AlemaniaFil: De Baan, Laura. Institute for Environmental Decisions. Natural and Social Science Interface; SuizaFil: Beck, Tabea. University of Stuttgar. Department Life Cycle Engineering; AlemaniaFil: Brandão, Miguel. Joint Research Centre. Institute for Environment and Sustainability, Sustainability. Assessment Unit, European Commission; ItaliaFil: Civit, Bárbara María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza; ArgentinaFil: Margni, Manuele . École Polytechnique de Montréal. Département de génie chimique; CanadáFil: Milà i Canals, Llorenç. Unilever R&D. Safety and Environmental Assurance Centre; Reino UnidoFil: Saad, Rosie. École Polytechnique de Montréal. Département de génie chimique; CanadáFil: De Souza, Danielle Maia. Joint Research Centre. Institute for Environment and Sustainability, Sustainability. Assessment Unit, European Commission; ItaliaFil: Müller Wenk, Ruedi . University of St. Gallen. Institute for Economy and the Environment; Alemani

    The ECO-indicator 98 explained

    No full text
    ISSN:0948-3349ISSN:1614-750

    Principles for Life Cycle Inventories of Land Use on a Global Scale

    No full text
    In order to perform an impact assessment of land use within the framework of Life Cycle Assessment (LCA) it is necessary to register the ÂżamountÂż of land use in Life Cycle Inventories. This chapter aims at developing a guideline how to quantify land use elementary flows in LCA. For that it distinguishes between land occupation and land transformation. A proposal is made how to standardize the land use classification and how to regionalize land use elementary flows.JRC.H.1-Water Resource

    Key elements in a framework for land use impact assessment within LCA

    No full text
    Background, Aims and Scope. Land use by agriculture, forestry, mining, house-building or industry leads to substantial impacts, particularly on biodiversity and on soil quality as a supplier of life support functions. Unfortunately there is no widely accepted assessment method so far for land use impacts. This paper presents an attempt, within the UNEP-SETAC Life Cycle Initiative, to provide a framework for the Life Cycle Impact Assessment (LCIA) of land use. Main Features. This framework builds from previous documents, particularly the SETAC book on LCIA (Lindeijer et al. 2002), developing essential issues such as the reference for occupation impacts; the impact pathways to be included in the analysis; the units of measure in the impact mechanism (land use interventions to impacts); the ways to deal with impacts in the future; and bio-geographical differentiation. Results. The paper describes the selected impact pathways, linking the land use elementary flows (occupation; transformation) and parameters (intensity) registered in the inventory (LCI) to the midpoint impact indicators and to the relevant damage categories (natural environment and natural resources). An impact occurs when the land properties are modified (transformation) and also when the current man-made properties are maintained (occupation). Discussion. The size of impact is the difference between the effect on land quality from the studied case of land use and a suitable reference land use on the same area (dynamic reference situation). The impact depends not only on the type of land use (including coverage and intensity) but is also heavily influenced by the bio-geographical conditions of the area. The time lag between the land use intervention and the impact may be large; thus land use impacts should be calculated over a reasonable time period after the actual land use finishes, at least until a new steady state in land quality is reached. Conclusion. Guidance is provided on the definition of the dynamic reference situation and on methods and time frame to assess the impacts occurring after the actual land use. Including the occupation impacts acknowledges that humans are not the sole users of land. Recommendations and Perspectives. The main damages affected by land use that should be considered by any method to assess land use impacts in LCIA are: biodiversity (existence value); biotic production potential (including soil fertility and use value of biodiversity); ecological soil quality (including life support functions of soil other than biotic production potential). Biogeographical differentiation is required for land use impacts, because the same intervention may have different consequences depending on the sensitivity and inherent land quality of the environment where it occurs. For the moment, an indication of how such task could be done and likely bio-geographical parameters to be considered are suggested. The recommendation of indicators for the suggested impact categories is a matter of future research
    corecore