25 research outputs found

    Changing provenance and stratigraphic signatures across the Triassic–Jurassic boundary in eastern Spitsbergen and the subsurface Barents Sea

    Get PDF
    A change to more sandstone dominated deposits and increasing condensation across the Triassic–Jurassic boundary is generally associated with improved reservoir quality in the Barents Sea. However, spatial and temporal changes in reservoir quality in this interval shows that the composition of the sediment source, immature sedimentary rocks supplied from the east or recycled in the basin in contrast to mature arenites to the south and west, affect the reservoir quality. The regional distribution of the different sources is best constrained in the southwestern part of the Barents Sea, and hitherto there has been no direct comparison between the zircon signature in outcrop analogues and their subsurface equivalents. In this study we evaluate the stratigraphic development of formations across the Triassic–Jurassic boundary in the Barents Sea and eastern Spitsbergen to compare their provenance signatures. By coupling outcrop and core data, we tie together the regional tectono-stratigraphic evolution of this important reservoir interval and relate the variable degree of sediment reworking with the relative distribution of immature Triassic sedimentary rocks across the basin. Results show higher degrees of erosion and reworking in Spitsbergen compared to the Barents Sea, consistent with local variations in the forebulge province of Novaya Zemlya observed in the subsurface. Provenance samples from Spitsbergen also record the same change in signature as in the subsurface Barents Sea. However, mature sediments are mixed with immature sediments later in Spitsbergen, indicating a latency in progradation from mature source areas which favour southern provenance areas in Fennoscandia as opposed to Greenland. Presence of young detrital zircon grains with similar Norian ages are recorded in the Upper Triassic strata both in the southernmost Barents Sea and on Spitsbergen, suggesting that a sediment source was active east of the basin and supplied sediment uniformly to the entire basin during the late Triassic.publishedVersio

    Linking regional unconformities in the Barents Sea to compression-induced forebulge uplift at the Triassic-Jurassic transition

    Get PDF
    The Triassic-Jurassic transition marks an important change in the basin configuration of the Greater Barents Sea. A contiguous basin with km-thick sedimentary successions changed into a partitioned basin with uplift in the west and foreland basins in the east with significant implication for the basin infill history. Our study employs a range of different high-resolution datasets from a distal part of the basin which unravels the complex pattern of differential uplift and erosion in the basin during this period. We record for the first time distinct angular unconformities between Upper Triassic strata and overlying Lower Jurassic strata within the basin, showing that large parts of it formed topographic highs. Our study links these angular unconformities to compression induced by the Novaya Zemlya Fold and Thrust Belt. A heterolithic basement below a thick sedimentary succession where the fold belt developed created a complex uplift pattern in the basin, at the same time similar to but different from typical forebulge areas. Compression caused inversion of older basement rooted faults defining platforms and graben systems throughout western parts of the Barents Sea basin, in addition to salt remobilization that resulted in differential uplift and erosion. These local zones of uplift controlled the sediment distribution pattern to the basin at a time when the most important reservoir units in the basin were deposited. This new understanding of the basin development explains hitherto enigmatic sequence boundaries that has inspired complex paleogeographic models in the past.publishedVersio

    Tectonostratigraphic development of the Upper Triassic to Middle Jurassic in the Hoop Area, Barents Sea: Implications for understanding ultra-condensed reservoir units

    Get PDF
    The most prolific reservoir intervals in the Barents Sea are found in the Upper Triassic to Middle Jurassic Realgrunnen Subgroup, deposited during a major change in the structural evolution of the basin which greatly influenced its development and distribution. The effects are evident in one of the petroleum provinces in the SW Barents Sea, the Hoop Area. Due to the condensed nature of the succession, the tectonostratigraphic evolution has been enigmatic. We use a range of different methods and dataset, including high-resolution P-Cable seismic to determine the tectono-stratigraphic evolution of the succession. Results are important for exploration and production in the Hoop Area and beyond, but also for a broader understanding of how ultra-condensed successions might evolve during long periods of non-deposition and short bursts of deposition. Seven major phases of deposition and non-deposition/erosion are defined. Stage 1 represents fluvio-deltaic deposition in the Fruholmen Formation (Norian), followed by Stage 2 with significant truncation and non-deposition, lasting up to 35 million years. Deposition resumed with the shallow marine to fluvial Nordmela and Stø formations (Pliensbachian to Bajocian), which both encapsule long periods of erosion and non-deposition (stage 3–6). Stage 7 is represented by transgression and shelf deposition in the Fuglen Formation (Bathonian). The change from a high-accommodation setting with continuous and relatively high rate of accumulation in the Triassic, to a low-accommodation setting with episodic deposition and extensive sediment cannibalization in the Jurassic, resulted in cleaner sandstones with better reservoir properties. The low-accommodation setting also enabled coarse-graded detritus from hinterlands in Fennoscandia to prograde into distal part of the basin and more amalgamation of the sands during the Jurassic. Adversely, the low accommodation setting also caused a fragmented pattern of deposition and preservation that needs to be carefully considered in subsurface datasets, often with limited resolution.publishedVersio

    Immune Cell Composition in Human Non-small Cell Lung Cancer

    Get PDF
    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death in the world. Immunological analysis of the tumor microenvironment (immunoscore) shows great promise for improved prognosis and prediction of response to immunotherapy. However, the exact immune cell composition in NSCLC remains unclear. Here, we used flow cytometry to characterize the immune infiltrate in NSCLC tumors, non-cancerous lung tissue, regional lymph node, and blood. The cellular identity of >95% of all CD45+ immune cells was determined. Thirteen distinct immune cell types were identified in NSCLC tumors. T cells dominated the lung cancer landscape (on average 47% of all CD45+ immune cells). CD4+ T cells were the most abundant T cell population (26%), closely followed by CD8+ T cells (22%). Double negative CD4−CD8− T cells represented a small fraction (1.4%). CD19+ B cells were the second most common immune cell type in NSCLC tumors (16%), and four different B cell sub-populations were identified. Macrophages and natural killer (NK) cells composed 4.7 and 4.5% of the immune cell infiltrate, respectively. Three types of dendritic cells (DCs) were identified (plasmacytoid DCs, CD1c+ DCs, and CD141+ DCs) which together represented 2.1% of all immune cells. Among granulocytes, neutrophils were frequent (8.6%) with a high patient-to-patient variability, while mast cells (1.4%), basophils (0.4%), and eosinophils (0.3%) were less common. Across the cohort of patients, only B cells showed a significantly higher representation in NSCLC tumors compared to the distal lung. In contrast, the percentages of macrophages and NK cells were lower in tumors than in non-cancerous lung tissue. Furthermore, the fraction of macrophages with high HLA-DR expression levels was higher in NSCLC tumors relative to distal lung tissue. To make the method readily accessible, antibody panels and flow cytometry gating strategy used to identify the various immune cells are described in detail. This work should represent a useful resource for the immunomonitoring of patients with NSCLC

    Past Arctic aliens have passed away, current ones may stay

    Get PDF
    Published version. Source at http://doi.org/10.1007/s10530-015-0937-9.Increased human activity and climate change are expected to increase the numbers and impact of alien species in the Arctic, but knowledge of alien species is poor in most Arctic regions. Through field investigations over the last 10 years, and review of alien vascular plant records for the high Arctic Archipelago Svalbard over the past 130 years, we explored long term trends in persistence and phenology. In total, 448 observations of 105 taxa have been recorded from 28 sites. Recent surveys at 18 of these sites revealed that alien species had disappeared at half of them. Investigations at a further 49 sites characterised by former human activity and/or current tourist landing sites did not reveal any alien species. Patterns of alien species distribution suggest that greater alien species richness is more likely to be aligned with ongoing human inhabitation than sites of transient use. The probability of an alien species being in a more advanced phenological stage increased with higher mean July temperatures. As higher mean July temperatures are positively correlated with more recent year, the latter finding suggests a clear warming effect on the increased reproductive potential of alien plants, and thus an increased potential for spread in Svalbard. Given that both human activity and temperatures are expected to increase in the future, there is need to respond in policy and action to reduce the potential for further alien species introduction and spread in the Arctic

    Using climate to relate water-discharge and area in modern and ancient catchments

    No full text
    Models relating sediment-supply to catchment-properties are important in order to use the geological record to deduce landscape evolution and the interplay between tectonics and climate. Water-discharge (Qw) is an important factor in the widely used BQwART-model of Syvitski and Milliman (2007), which relates sediment load to a set of measureable catchment parameters. Although many of the factors in this equation may be independently estimated with some degree of certainty in ancient systems, water-discharge (Qw) certainly cannot. An analysis of a world database of modern catchments (Milliman and Farnsworth, 2011) shows that the commonly applied equation relating catchment area (A) to water-discharge (Qw=0.075A0.8), does not predict water-discharge from catchment area well in many cases (R2=0.5 and an error spanning 4 orders-of-magnitude). Neither does the equation incorporate the effect of arid and wet climate on this relationship. The inclusion of climate-data into such estimations is an opportunity to refine these estimates, because generalized estimates of palaeoclimate can often be deduced on the basis of sedimentological data such as palaeosol types, mineralogy and palaeohydraulics. This paper investigates how the relationship between catchment size and river discharge vary with four runoff categories (arid, subarid, humid, and wet) which are recognizable in the geological record, and modify the coefficient and exponent of the abovementioned equation according to these classes. It follows from this analysis that water-discharge from arid catchments is so variable, that water-discharge cannot be predicted from catchment area. Our modified model yields improved results in relating discharge to catchment size (R2=0.95 and error spanning 1 order-of-magnitude) when core-, outcrop- or regional palaeoclimate reconstruction data are available in non-arid systems. In conclusion, this model, in contrast to the previous, is sufficient for many geological applications and will lead to a higher degree of confidence in the application of mass-balance models in ancient systems

    Distinct petrographic responses to basin reorganization across the Triassic–Jurassic boundary in the southwestern Barents Sea

    No full text
    A general shift towards higher mineralogical and textural maturity changes the reservoir character across the Triassic–Jurassic transition in the southwestern Barents Sea basin (SWBSB), largely affecting the hydrocarbon prospectivity in the region. Petrographic and geochronological provenance data presented in this paper suggest that the shift from mineralogically immature to mature sandstones initiated during the deposition of the Norian–Rhaetian Fruholmen Formation, and varies with basin location. Strong contrasts between the Fruholmen Formation and underlying formations are associated with proximity to the rejuvenated Caledonian and Fennoscandian hinterlands and are mainly restricted to the southern basin margins. In the basin interior, subtle petrographic variations between the Fruholmen Formation and older Triassic sandstones reflect a distal position relative to the southern hinterland. The long‐lived misconception of a regional compositional contrast in the Arctic at the turn of the Norian can be attributed to higher sampling frequency associated with hydrocarbon exploration activity along the southern basin margins, and masking by increased annual precipitation and subsequent reworking during the Jurassic. Geothermal signatures and rearrangement of ferric clay material across the Carnian–Norian transition support a recycled origin for the Fruholmen Formation in the basin interior. As the closest tectonically active region at the time, the Novaya Zemlya fold‐and‐thrust belt represents the best provenance candidate for polycyclic components in Norian–Rhaetian strata. In addition to recycling in the hinterland during the Late Triassic, local erosion of exposed intrabasinal highs and platforms at the Triassic–Jurassic transition represents a second process where thermodynamically unstable mineral components originally sourced from the Uralides may be removed. Textural and mineralogical modification may also have occurred in marginal‐marine depositional environments during periods with elevated sea level. Mature sediment supply from the rejuvenated hinterland in the south, multiple cycles of reworking and gradual accumulation of polycyclic grains have likely led to the extreme compositional maturity registered in the Tubåen, Nordmela and Stø formations in the SWBSB. It is likely that increased annual precipitation since the latest Carnian had an amplifying effect on sandstone maturation across the Triassic–Jurassic boundary, but we consider the effect to be inferior compared to provenance shifts and reworking. Findings from this study are important for understanding compositional and textural maturity enhancement processes in siliciclastic sedimentary basins
    corecore