140 research outputs found

    Cryogenic Pressure Calibration Facility Using a Cold Force Reference

    Get PDF
    Presently various commercial cryogenic pressure sensors are being investigated for installation in the LHC collider, they will eventually be used to assess that the magnets are fully immersed in liquid and to monitor fast pressure transients. In the framework of this selection procedure a cryogenic pressue calibration facility has been designed and built; it is based on a cryogenic primary pressure reference made of a bellows that converts the pressure into a force measurement. For that a shaft transfers this force to a precision force transducer at room temperature. Knowing the liquid bath pessure and the surface area of the bellows the pressure applied to the transducers under calibration is calculated; corrections due to thermal contraction are introduced. To avoid loss of force in the bellows wall its length is maintained constant; a cold capacitive displacement sensor measures this. The calibration temperature covers 1.5 K to 4.2 K and the pressure 0 to 20 bar. In contrast with more classical techniques that refer to a pressure reference at room temperature, the method presented in this paper avoid errors due to the uncertainty on the hydrostatic head calculation, to thermoacoustic oscillations and to pressure variation caused by temperature drift along the sensing capillary

    Performance of the LHC Pre-Injectors

    Get PDF
    The LHC pre-injector complex, comprising Linac 2, the PS Booster (PSB) and the PS, has undergone a major upgrade in order to meet the very stringent requirements of the LHC. Whereas bunches with the nominal spacing and transverse beam brightness were already available from the PS in 1999 [1], their length proved to be outside tolerance due to a debunching procedure plagued by microwave instabilities. An alternative scenario was then proposed, based on a series of bunch-splitting steps in the PS. The entire process has recently been implemented successfully, and beams whose longitudinal characteristics are safely inside LHC specifications are now routinely available. Variants of the method also enable bunch trains with gaps of different lengths to be generated. These are of interest for the study and possible cure of electron cloud effects in both the SPS and LHC. The paper summarizes the beam dynamics issues that had to be addressed to produce beams with all the requisite qualities for the LHC

    Trajectory Correction in the Transfer Line TT2-TT10 for the Continuous Transfer (CT)

    Get PDF
    A new scheme for the trajectory correction in the TT2-TT10 transfer line for the Continuous Transfer (CT) extraction from the PS to the SPS has been developed together with a new software application, PS-CT-Check. In this note the algorithm, the software, and the results of the tests performed during the 2007 run are summarized. The PS-CT-Check user's manual is also provided. The scheme, with minor modifications, will be applied to the new Multi-Turn Extraction (MTE)

    Measurement of the longitudinal and transverse impedance of kicker magnets using the coaxial wire method

    Get PDF
    Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, even above the Curie temperature of ferrite. In addition the impedance can contribute to beam instabilities. In this paper different variants of the coaxial wire method, both for measuring longitudinal and transverse impedance, are briefly discussed in a tutorial manner and do's and don'ts are shown on practical examples. In addition we present the results of several impedance measurements for SPS kickers using the wire method and compare those results with theoretical models

    A New Type of distributed Enamel based Clearing Electrode

    Get PDF
    Clearing electrodes can be used for electron cloud (EC) suppression in high intensity particle accelerators. In this paper the use of low and highly resistive layers on a dielectric substrate are examined. The beam coupling impedance of such a structure is evaluated. Furthermore the clearing efficiency as well as technological issues are discussed

    Impedance measurements and simulations on the TCT and TDI LHC collimators

    Get PDF
    The LHC collimation system is a critical element for the safe operation of the LHC machine and it is subject to continuous performance monitoring, hardware upgrade and optimization. In this work we will address the impact on impedance of the upgrades performed on the injection protection target dump (TDI), where the absorber material has been changed to mitigate the device heating observed in machine operation, and on selected secondary (TCS) and tertiary (TCT) collimators, where beam position monitors (BPM) have been embedded for faster jaw alignment. Con- cerning the TDI, we will present the RF measurements per- formed before and after the upgrade, comparing the result to heating and tune shift beam measurements. For the TCTs, we will study how the higher order modes (HOM) intro- duced by the BPM addition have been cured by means of ferrite placement in the device. The impedance mitigation campaign has been supported by RF measurements whose results are in good agreement with GdfidL and CST simula- tions. The presence of undamped low frequency modes is proved not to be detrimental to the safe LHC operation

    Accelerator physics concept for upgraded LHC collimation performance

    Get PDF
    The LHC collimation system is implemented in phases, in view of the required extrapolation by 2-3 orders of magnitude beyond Tevatron and HERA experience in stored energy. All available simulations predict that the LHC proton beam intensity with the "Phase I" collimation system may be limited by the impedance of the collimators or cleaning efficiency. Maximum efficiency requires collimator materials very close to the beam, generating the dominant resistive wall impedance in the LHC. Above a certain intensity the beam is unstable. On the other hand, even if collimators are set very close to the beam, the achievable cleaning efficiency is predicted to be inadequate, requiring either beam stability beyond specifications or reduced intensity. The accelerator physics concept for upgrading cleaning efficiency, for both proton and heavy ion beams, and reducing collimator-related impedance is described. Besides the "Phase II" secondary collimators, new collimators are required in a few super-conducting regions

    Tune shift induced by nonlinear resistive wall wake field of flat collimator

    Get PDF
    We present formulae for the coherent and incoherent tune shifts due to the nonlinear resistive wall wake field for a single beam traveling between two parallel plates. In particular, we demonstrate that the nonlinear terms of the resistive-wall wake field become important if the gap between the plates is comparable to the transverse rms beam size. We also compare the theoretically predicted tune shift as a function of gap size with measurements for an LHC prototype graphite collimator in the CERN SPS and with simulations

    3D City Models and urban information: Current issues and perspectives

    Get PDF
    Considering sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban or environmental issues. 3D city models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Could these 3D City models be used to integrate urban and environmental knowledge? How could they be improved to fulfill such role? We believe that enriching the semantics of current 3D city models, would extend their functionality and usability; therefore, they could serve as integration platforms of the knowledge related to urban and environmental issues allowing a huge and significant improvement of city sustainable management and development. But which elements need to be added to 3D city models? What are the most efficient ways to realize such improvement / enrichment? How to evaluate the usability of these improved 3D city models? These were the questions tackled by the COST Action TU0801 “Semantic enrichment of 3D city models for sustainable urban development”. This book gathers various materials developed all along the four year of the Action and the significant breakthroughs
    • …
    corecore