158 research outputs found
MFM imaging of expanded austenite formed on 304 SS and CoCrMo alloys
New data related to the magnetic nature of the expanded austenite layers on CoCrMo and austenitic stainless steel by nitrogen plasma immersion ion implantation (PIII) are presented. Implantations were performed in the temperature range between 300 and 550°C for a fixed processing time of 1h. Magnetic properties, nitrogen distribution, implanted layer phases, and surface topography were studied with a combination of experimental techniques involving magnetic force microscopy, SIMS, XRD, SEM and AFM. As a function of the processing temperature, phase evolution stage for both alloys follows the same trend: (1) initial stage of the expanded phase formation, γN; (2) its full development; and (3) its decomposition into CrN precipitates and the Cr-depleted matrix, fcc γ-(Co, Mo) for CoCrMo and bcc α-(Fe, Ni) for 304 SS. MFM imaging reveals distinct, stripe-like ferromagnetic domains for the fully developed expanded austenite layers both on CoCrMo and 304 SS alloys. Weak domain structures are observed for the CoCrMo samples treated at low and high processing temperatures. The images also provide strong evidence for grain orientation dependence of magnetic properties. The ferromagnetic state for the γN phase observed here is mainly linked to large lattice expansions due to high N content
Recommended from our members
Incorporation of nitrogen into TiO2 thin films during PVD processes
In this paper we investigate the possibility of incorporating nitrogen into amorphous, photocatalytic TiO2 thin films, prepared at room temperature, during the growth process. The aim is to reduce the bandgap of the UV active thin films. Physical vapor deposition experiments employing a titanium vacuum arc with gas backfill ranging from pure oxygen to pure nitrogen, are carried out. The resulting films are characterized for chemical composition, phase composition, optical properties and hydrophilicity in order to determine a correlation between gas composition and thin film properties. The experimental results point that a visible change in the band structure of the deposited layers is achieved
Recommended from our members
Depth-Resolved Phase Analysis of Expanded Austenite Formed in Austenitic Stainless Steel
Expanded austenite γN formed after nitrogen insertion into austenitic stainless steel and CoCr alloys is known as a hard and very wear resistant phase. Nevertheless, no single composition and lattice expansion can describe this phase with nitrogen in solid solution. Using in situ X-ray diffraction (XRD) during ion beam sputtering of expanded austenite allows a detailed depth-dependent phase analysis, correlated with the nitrogen depth profiles obtained by time-of-flight secondary ion mass spectrometry (ToF-SIMS) or glow discharge optical emission spectroscopy (GDOES). Additionally, in-plane XRD measurements at selected depths were performed for strain analysis. Surprisingly, an anomalous peak splitting for the (200) expanded peak was observed for some samples during nitriding and sputter etching, indicating a layered structure only for {200} oriented grains. The strain analysis as a function of depth and orientation of scattering vector (parallel/perpendicular to the surface) is inconclusive. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Conductive Tracks in Carbon Implanted Titania Nanotubes: Atomic-Scale Insights from Experimentally Based Ab Initio Molecular Dynamics Modeling
Ion implantation of titania nanotubes is a highly versatile approach for
tailoring structural and electrical properties. While recently self-organized
nanoscale compositional patterning has been reported, the atomistic
foundations and impact on electronic structure are not established at this
point. To study these aspects, ab initio molecular dynamic simulations based
on atomic compositions in C implanted titania nanotubes according to elastic
recoil detection analysis are employed. Consistent with experimental data,
carbon accumulates in chainlike precipitates, which are favorable for
enhancing conductivity, as revealed by density-functional theory electronic
ground states calculations are demonstrated
Recommended from our members
Compositional Patterning in Carbon Implanted Titania Nanotubes
Ranging from novel solar cells to smart biosensors, titania nanotube arrays constitute a highly functional material for various applications. A promising route to modify material characteristics while preserving the amorphous nanotube structure is present when applying low-energy ion implantation. In this study, the interplay of phenomenological effects observed upon implantation of low fluences in the unique 3D structure is reported: sputtering versus readsorption and plastic flow, amorphization versus crystallization and compositional patterning. Patterning within the oxygen and carbon subsystem is revealed using transmission electron microscopy. By applying a Cahn–Hilliard approach within the framework of driven alloys, characteristic length scales are derived and it is demonstrated that compositional patterning is expected on free enthalpy grounds, as predicted by density functional theory based ab initio calculations. Hence, an attractive material with increased conductivity for advanced devices is provided. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH Gmb
Recommended from our members
Nanoporous Morphogenesis in Amorphous Carbon Layers: Experiments and Modeling on Energetic Ion Induced Self‐Organization
Nanoporous amorphous carbon constitutes a highly relevant material for a multitude of applications ranging from energy to environmental and biomedical systems. In the present work, it is demonstrated experimentally how energetic ions can be utilized to tailor porosity of thin sputter deposited amorphous carbon films. The physical mechanisms underlying self-organized nanoporous morphogenesis are unraveled by employing extensive molecular dynamics and phase field models across different length scales. It is demonstrated that pore formation is a defect induced phenomenon, in which vacancies cluster in a spinodal decomposition type of self-organization process, while interstitials are absorbed by the amorphous matrix, leading to additional volume increase and radiation induced viscous flow. The proposed modeling framework is capable to reproduce and predict the experimental observations from first principles and thus opens the venue for computer assisted design of nanoporous frameworks
Improved Adhesion of the DLC Coating Using HiPIMS with Positive Pulses and Plasma Immersion Pretreatment
Diamond-like carbon (DLC) coatings are used due to their extraordinary tribomechanical properties, great hardness, high elastic modulus, high wear resistance, low friction coefficient and chemical inertness, which provide them with biocompatibility. Compared to other physical vapor deposition (PVD) coatings of transition nitrides and carbonitrides, DLC has limited adhesion, so it is necessary to develop new techniques to overcome this limitation. This work reports the results of scratch testing for the measurement of adhesion and of tests for wear resistance and nanoindentation in AISI 316L stainless steel coated with a WC:C coating, produced using novel high-power impulse magnetron sputtering (HiPIMS) technology with positive pulses. In addition, the use of a preceding surface modification technique, specifically plasma immersion ion implantation (PIII), was studied with the aim of optimizing the adhesion of the coating. The results show how the coating improved the tribomechanical properties through the use of positive pulse HiPIMS compared to conventional HiPIMS, with an adhesion result that reached critical load values of 48.5 N and a wear coefficient of 3.96 × 10−7 mm3/n
- …