17 research outputs found

    27 Al NMR/MRI Studies of the Transport of Granular Al 2 O 3

    Get PDF
    The NMR/MRI techniques are applicable to the studies of motion of granular solids, providing information on the velocities, effective diffusivities and correlation times of the moving particles. The studies of transport of granular solids reported to-date are based on the detection of the 1H NMR signal of the liquid phase of liquid-containing solid materials. Yet, the solid phase of many granular solids contains magnetic nuclei, providing in principle an opportunity to study motion of such solids by directly detecting the NMR signal of the solid phase. In this paper, we demonstrate that this can be performed with the use of conventional echo pulse sequences in combination with the conventional motion encoding schemes. The detection of the 27Al NMR signal of the Al2O3 powder was used to obtain velocity maps of the powder packed in a spinning cylinder, and to measure the velocity distribution (average propagator) for the gravity driven transport of the same powder in a vertical pipe

    27 Al NMR/MRI Studies of the Transport of Granular Al 2 O 3

    Get PDF
    The NMR/MRI techniques are applicable to the studies of motion of granular solids, providing information on the velocities, effective diffusivities and correlation times of the moving particles. The studies of transport of granular solids reported to-date are based on the detection of the 1H NMR signal of the liquid phase of liquid-containing solid materials. Yet, the solid phase of many granular solids contains magnetic nuclei, providing in principle an opportunity to study motion of such solids by directly detecting the NMR signal of the solid phase. In this paper, we demonstrate that this can be performed with the use of conventional echo pulse sequences in combination with the conventional motion encoding schemes. The detection of the 27Al NMR signal of the Al2O3 powder was used to obtain velocity maps of the powder packed in a spinning cylinder, and to measure the velocity distribution (average propagator) for the gravity driven transport of the same powder in a vertical pipe

    Approaches to the Modification of Perfluorosulfonic Acid Membranes

    No full text
    Polymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties. Today, one of the most well-known practical applications of PFSA membranes is the development of fuel cells. Some disadvantages of PFSA membranes, such as low conductivity at low humidity and high temperature limit their application. The approaches to optimization of properties are modification of commercial PFSA membranes and polymers by incorporation of different additive or pretreatment. This review summarizes the approaches to their modification, which will allow the creation of materials with a different set of functional properties, differing in ion transport (first of all proton conductivity) and selectivity, based on commercially available samples. These approaches include the use of different treatment techniques as well as the creation of hybrid materials containing dopant nanoparticles. Modification of the intrapore space of the membrane was shown to be a way of targeting the key functional properties of the membranes

    Cross-Cultural Differences in Callings

    No full text
    This project will investigate predictors of cross-cultural differences in calling using the Unified Multidimensional Calling Scale

    27 Al NMR/MRI Studies of the Transport of Granular Al 2 O 3

    No full text
    The NMR/MRI techniques are applicable to the studies of motion of granular solids, providing information on the velocities, effective diffusivities and correlation times of the moving particles. The studies of transport of granular solids reported to-date are based on the detection of the 1H NMR signal of the liquid phase of liquid-containing solid materials. Yet, the solid phase of many granular solids contains magnetic nuclei, providing in principle an opportunity to study motion of such solids by directly detecting the NMR signal of the solid phase. In this paper, we demonstrate that this can be performed with the use of conventional echo pulse sequences in combination with the conventional motion encoding schemes. The detection of the 27Al NMR signal of the Al2O3 powder was used to obtain velocity maps of the powder packed in a spinning cylinder, and to measure the velocity distribution (average propagator) for the gravity driven transport of the same powder in a vertical pipe

    Survey and Measures

    No full text

    On the Properties of Nafion Membranes Recast from Dispersion in <i>N</i>-Methyl-2-Pyrrolidone

    No full text
    Perfluorosulfonic acid Nafion membranes are widely used as an electrolyte in electrolysis processes and in fuel cells. Changing the preparation and pretreatment conditions of Nafion membranes allows for the optimization of their properties. In this work, a Nafion-NMP membrane with a higher conductivity than the commercial Nafion® 212 membrane (11.5 and 8.7 mS∙cm−1 in contact with water at t = 30 °C) and a comparable hydrogen permeability was obtained by casting from a Nafion dispersion in N-methyl-2-pyrrolidone. Since the ion-exchange capacity and the water uptake of these membranes are similar, it can be assumed that the increase in conductivity is the result of optimizing the Nafion-NMP microstructure by improving the connectivity of the pores and channels system. This leads to a 27% increase in the capacity of the membrane electrode assembly with the Nafion-NMP membrane compared to the Nafion® 212 membrane. Thus, the method of obtaining a Nafion membrane has a great influence on its properties and performance of fuel cells based on them

    Effect of Organo-Silanes Structure on the Properties of Silane-Crosslinked Membranes Based on Cardo Polybenzimidazole PBI-O-PhT

    No full text
    Polybenzimidazoles (PBI) doped with phosphoric acid (PA) are promising electrolytes for medium temperature fuel cells. Their significant disadvantage is a partial or complete loss of mechanical properties and an increase in hydrogen permeability at elevated temperatures. Covalent silanol crosslinking is one possible way to stabilize PBI membranes in the presence of PA. Three organo-substituted silanes, namely (3-Bromopropyl)trimethoxysilane (SiBr), trimethoxy [2-(7-oxabicyclo [4.1.0]hept-3-yl)ethyl]silane (Si-biC) and (3-Glycidyloxypropyl)trimethoxysilane (KH 560), were used as covalent crosslinkers of PBI-O-PhT in order to determine the effect of the silane structure and crosslinking degree on membrane properties. The crosslinking degree was 1–50%. All crosslinked membranes were characterized by impedance and IR-spectroscopy. The mechanical properties, morphology, stability and hydrogen permeability of the membranes were determined. In the case of silanes with linear substituents (SiBr, KH 560), a denser structure is formed, which is characterized by greater oxidative stability and lower hydrogen permeability in comparison to the silane with a bulk group. All the crosslinked membranes have a higher mechanical strength compared with the initial PBI-O-PhT membrane both before and after doping with PA. Despite the hardening of the polymer matrix of the membranes, their proton conductivity changes insignificantly. It was shown that cross-linked membranes can be used in fuel cells
    corecore