2,243 research outputs found

    Control of western corn rootworm via RNAi traits in maize: Lethal and sublethal effects of Sec23 dsRNA

    Get PDF
    Background: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm ( WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. Results: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0maize events carrying rootwormSec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25in diet bioassays. Conclusion: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25, suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. Includes supplemental materials

    Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits

    Get PDF
    Brain microvascular endothelial cells (BMECs) are an essential component of the blood-brain barrier (BBB) that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington's disease (HD), it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived BMECs (iBMEC) from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.American Heart Association (12PRE10410000)American Heart Association (CIRMTG2-01152)National Institutes of Health (U.S.) (NIHNS089076

    The Vehicle, Spring 2008

    Get PDF
    Table of Contents Not So Hot Cocoa (To a fish named Mooshu)Gina Lobiancopage 1 LessonsGlen Davispage 2 Christian Campus HouseJacob Fosterpage 4 Gray AreaRebecca Griffithpage 5 Gathering RosebudsJacob Fosterpage 6 Play Those BluesJacob Dawsonpage 8 The Apple CarAmanda Vealepage 10 A Night at the UptownerJacob Fosterpage 12 Candy DishAnthony Hesseldenzpage 14 Winter DayAnna-Elise Pricepage 15 The Friendly FogSarah Ruhollpage 16 Hey MamaJacob Dawsonpage 18 Keep TurningStephanie Drozdpage 20 A Pen, A Rose, and a Bottle of JackCarissa Haydenpage 21 Ten Days LaterAndrew Deckerpage 22 FearShannara Holderpage 27 Thank You and GoodnightJacob Fosterpage 28 My Mother\u27s PassingAmanda Vealepage 30 The Bearded ManAndrew Deckerpage 32 TabooMario Podeschipage 34 DervishScott Lutzpage 41 IckJacob Fosterpage 42 Meditation of the SeasonsStephanie Drozdpage 45 Full MoonAnna-Elise Pricepage 47 Becoming WiseAmanda Vealepage 48 In SightAnthony Hesseldenzpage 50 About the Authors Art Submissions Down the TracksShannara Holdercovers and page 23 Out the Back DoorShannara Holderpage 24 UntitledJennifer O\u27Neilpage 25 LullabyShannara Holderpage 26https://thekeep.eiu.edu/vehicle/1089/thumbnail.jp

    RNAi targeting of rootworm \u3ci\u3eTroponin I\u3c/i\u3e transcripts confers root protection in maize

    Get PDF
    Western corn rootworm, Diabrotica virgifera virgifera, is the major agronomically important pest of maize in the US Corn Belt. To augment the repertoire of the available dsRNA-based traits that control rootworm, we explored a potentially haplolethal gene target, wings up A (wupA), which encodes Troponin I. Troponin I, a component of the Troponin-Tropomyosin complex, is an inhibitory protein involved in muscle contraction. In situ hybridization showed that feeding on wupA-targeted dsRNAs caused systemic transcript knockdown in D. v. virgifera larvae. The knockdown of wupA transcript, and by extension Troponin I protein, led to deterioration of the striated banding pattern in larval body muscle and decreased muscle integrity. Additionally, the loss of function of the circular muscles surrounding the alimentary system led to significant accumulation of food material in the hind gut, which is consistent with a loss of peristaltic motion of the alimentary canal. In this study, we demonstrate that wupA dsRNA is lethal in D. v. virgifera larvae when fed via artificial diet, with growth inhibition of up to 50% within two days of application. Further, wupA hairpins can be stably expressed and detected in maize. Maize expressing wupA hairpins exhibit robust root protection in greenhouse bioassays, with several maize transgene integration events showing root protection equivalent to commercial insecticidal protein-expressing maize

    The L1 cell adhesion molecule constrains dendritic spine density in pyramidal neurons of the mouse cerebral cortex

    Get PDF
    A novel function for the L1 cell adhesion molecule, which binds the actin adaptor protein Ankyrin was identified in constraining dendritic spine density on pyramidal neurons in the mouse neocortex. In an L1-null mouse mutant increased spine density was observed on apical but not basal dendrites of pyramidal neurons in diverse cortical areas (prefrontal cortex layer 2/3, motor cortex layer 5, visual cortex layer 4. The Ankyrin binding motif (FIGQY) in the L1 cytoplasmic domain was critical for spine regulation, as demonstrated by increased spine density and altered spine morphology in the prefrontal cortex of a mouse knock-in mutant (L1YH) harboring a tyrosine (Y) to histidine (H) mutation in the FIGQY motif, which disrupted L1-Ankyrin association. This mutation is a known variant in the human L1 syndrome of intellectual disability. L1 was localized by immunofluorescence staining to spine heads and dendrites of cortical pyramidal neurons. L1 coimmunoprecipitated with Ankyrin B (220 kDa isoform) from lysates of wild type but not L1YH forebrain. This study provides insight into the molecular mechanism of spine regulation and underscores the potential for this adhesion molecule to regulate cognitive and other L1-related functions that are abnormal in the L1 syndrome

    Galaxy And Mass Assembly: galaxy morphology in the green valley, prominent rings, and looser spiral arms

    Get PDF
    Galaxies broadly fall into two categories: star-forming (blue) galaxies and quiescent (red) galaxies. In between, one finds the less populated “green valley . Some of these galaxies are suspected to be in the process of ceasing their star-formation through a gradual exhaustion of gas supply or already dead and are experiencing a rejuvenation of star-formation through fuel injection. We use the Galaxy And Mass Assembly database and the Galaxy Zoo citizen science morphological estimates to compare the morphology of galaxies in the green valley against those in the red sequence and blue cloud. Our goal is to examine the structural differences within galaxies that fall in the green valley, and what brings them there. Previous results found disc features such as rings and lenses are more prominently represented in the green valley population. We revisit this with a similar sized data set of galaxies with morphology labels provided by the Galaxy Zoo for the GAMA fields based on new KiDS images. Our aim is to compare qualitatively the results from expert classification to that of citizen science. We observe that ring structures are indeed found more commonly in green valley galaxies compared to their red and blue counterparts. We suggest that ring structures are a consequence of disc galaxies in the green valley actively exhibiting characteristics of fading discs and evolving disc morphology of galaxies. We note that the progression from blue to red correlates with loosening spiral arm structure

    Autocrine Effects of Brain Endothelial Cell-Produced Human Apolipoprotein E on Metabolism and Inflammation in vitro

    Get PDF
    Reports of APOE4-associated neurovascular dysfunction during aging and in neurodegenerative disorders has led to ongoing research to identify underlying mechanisms. In this study, we focused on whether the APOE genotype of brain endothelial cells modulates their own phenotype. We utilized a modified primary mouse brain endothelial cell isolation protocol that enabled us to perform experiments without subculture. Through initial characterization we found, that compared to APOE3, APOE4 brain endothelial cells produce less apolipoprotein E (apoE) and have altered metabolic and inflammatory gene expression profiles. Further analysis revealed APOE4 brain endothelial cultures have higher preference for oxidative phosphorylation over glycolysis and, accordingly, higher markers of mitochondrial activity. Mitochondrial activity generates reactive oxygen species, and, with APOE4, there were higher mitochondrial superoxide levels, lower levels of antioxidants related to heme and glutathione and higher markers/outcomes of oxidative damage to proteins and lipids. In parallel, or resulting from reactive oxygen species, there was greater inflammation in APOE4 brain endothelial cells including higher chemokine levels and immune cell adhesion under basal conditions and after low-dose lipopolysaccharide (LPS) treatment. In addition, paracellular permeability was higher in APOE4 brain endothelial cells in basal conditions and after high-dose LPS treatment. Finally, we found that a nuclear receptor Rev-Erb agonist, SR9009, improved functional metabolic markers, lowered inflammation and modulated paracellular permeability at baseline and following LPS treatment in APOE4 brain endothelial cells. Together, our data suggest that autocrine signaling of apoE in brain endothelial cells represents a novel cellular mechanism for how APOE regulates neurovascular function

    History of Galaxy Interactions and their Impact on Star Formation over the Last 7 Gyr from GEMS

    Get PDF
    We perform a comprehensive estimate of the frequency of galaxy mergers and their impact on star formation over z~0.24--0.80 (lookback time T_b~3--7 Gyr) using 3698 (M*>=1e9 Msun) galaxies with GEMS HST, COMBO-17, and Spitzer data. Our results are: (1) Among 790 high mass (M*>=2.5e10 Msun) galaxies, the visually-based merger fraction over z~0.24--0.80, ranges from 9%+-5% to 8%+-2%. Lower limits on the major and minor merger fractions over this interval range from 1.1% to 3.5%, and 3.6% to 7.5%, respectively. This is the first approximate empirical estimate of the frequency of minor mergers at z<1. For a visibility timescale of ~0.5 Gyr, it follows that over T_b~3--7 Gyr, ~68% of high mass systems have undergone a merger of mass ratio >1/10, with ~16%, 45%, and 7% of these corresponding respectively to major, minor, and ambiguous `major or minor' mergers. The mean merger rate is a few x 1e-4 Gyr-1 Mpc-3. (2) We compare the empirical merger fraction and rate for high mass galaxies to a suite of Lambda CDM-based models: halo occupation distribution models, semi-analytic models, and hydrodynamic SPH simulations. We find qualitative agreement between observations and models such that the (major+minor) merger fraction or rate from different models bracket the observations, and show a factor of five dispersion. Near-future improvements can now start to rule out certain merger scenarios. (3) Among ~3698 M*>=1e9 Msun galaxies, we find that the mean SFR of visibly merging systems is only modestly enhanced compared to non-interacting galaxies over z~0.24--0.80. Visibly merging systems only account for less than 30% of the cosmic SFR density over T_b~3--7 Gyr. This suggests that the behavior of the cosmic SFR density over the last 7 Gyr is predominantly shaped by non-interacting galaxies.Comment: Accepted for Publication in the Astrophysical Journal. 17 pages of text, 21 figures, 3 tables. Uses emulateapj5.st

    Focused ultrasound-mediated brain genome editing.

    Get PDF
    Gene editing in the brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches mainly rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain
    • 

    corecore