206 research outputs found
Control Augmented Structural Synthesis
A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated
Error analysis for semi-analytic displacement derivatives with respect to shape and sizing variables
Sensitivity analysis is fundamental to the solution of structural optimization problems. Consequently, much research has focused on the efficient computation of static displacement derivatives. As originally developed, these methods relied on analytical representations for the derivatives of the structural stiffness matrix (K) with respect to the design variables (b sub i). To extend these methods for use with complex finite element formulations and facilitate their implementation into structural optimization programs using the general finite element method analysis codes, the semi-analytic method was developed. In this method the matrix the derivative of K/the derivative b sub i is approximated by finite difference. Although it is well known that the accuracy of the semi-analytic method is dependent on the finite difference parameter, recent work has suggested that more fundamental inaccuracies exist in the method when used for shape optimization. Another study has argued qualitatively that these errors are related to nonuniform errors in the stiffness matrix derivatives. The accuracy of the semi-analytic method is investigated. A general framework was developed for the error analysis and then it is shown analytically that the errors in the method are entirely accounted for by errors in delta K/delta b sub i. Furthermore, it is demonstrated that acceptable accuracy in the derivatives can be obtained through careful selection of the finite difference parameter
Coronary Artery Ligation and Intramyocardial Injection in a Murine Model of Infarction
Mouse models are a valuable tool for studying acute injury and chronic remodeling of the myocardium in vivo. With the advent of genetic modifications to the whole organism or the myocardium and an array of biological and/or synthetic materials, there is great potential for any combination of these to assuage the extent of acute ischemic injury and impede the onset of heart failure pursuant to myocardial remodeling
Repair of Scour Holes and Levees After the 1993 Flood
The record high water during the summer of 1993 significantly impacted the flood control levee structures in the U.S. Army Corps of Engineers, Kansas City District. Scour holes in the levees and their foundations reached bedrock, up to 75 feet deep in some places, and extended up to 2,000 feet landward of the landside toe on lengths reaching 2,100 feet along selected levee embankments. Different methods used by the Corps of Engineers to repair the scoured levee embankment and foundation soils, their hydraulic impact on river stages, and the efficiency of different methods are presented. The methods discussed consist of: (1) backfill of the riverside scour holes; (2) backfill of the scour hole and reconstruction of the levee embankment to the original centerline; (3) realignment of levees landward of the scour boles; and (4) a grouted cut-off wall in a rockfill embankment and construction of a ring levee around the landside scour hole. The efficiency of different methods was evaluated by observation of the levee system during subsequent flood events
Predicting Risk of Emerging Cardiotoxicity
Smoking, hypercholesterolemia, hyperlipidemia, obesity, diabetes, insulin resistance and family history all are well established general risk factors broadly associated with injury in the cardiovascular system. Similarly, echocardiography, electrocardiography, MRI, PET scans and circulating biomarkers like cardiac Troponin (cTn) provide indications that injury has occurred. Traditionally, cardiovascular injury has been attributed to conditions that exacerbate the potential for ischemia, either by producing excessive metabolic/work demands or by impairing the perfusion necessary to support the metabolic/work demands. This review summarizes additional factors that are underappreciated in contributing to the risk of injury, such as iatrogenic injury secondary to treatment for other conditions, infection, environmental exposures, and autoimmune processes
The Hyper Suprime-Cam Software Pipeline
In this paper, we describe the optical imaging data processing pipeline
developed for the Subaru Telescope's Hyper Suprime-Cam (HSC) instrument. The
HSC Pipeline builds on the prototype pipeline being developed by the Large
Synoptic Survey Telescope's Data Management system, adding customizations for
HSC, large-scale processing capabilities, and novel algorithms that have since
been reincorporated into the LSST codebase. While designed primarily to reduce
HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline
for reducing general-observer HSC data. The HSC pipeline includes high level
processing steps that generate coadded images and science-ready catalogs as
well as low-level detrending and image characterizations.Comment: 39 pages, 21 figures, 2 tables. Submitted to Publications of the
Astronomical Society of Japa
Current practice of first-trimester ultrasound screening for structural fetal anomalies in developed countries
Objectives: First-trimester ultrasound screening is increasingly performed to detect fetal anomalies early in pregnancy, aiming to enhance reproductive autonomy for future parents. This study aims to display the current practice of first-trimester ultrasound screening in developed countries. Method: An online survey among 47 prenatal screening experts in developed countries. Results: First-trimester structural anomaly screening is available in 30 of the 33 countries and is mostly offered to all women with generally high uptakes. National protocols are available in 23/30 (76.7%) countries, but the extent of anatomy assessment varies. Monitoring of scan quality occurs in 43.3% of the countries. 23/43 (53.5%) of the respondents considered the quality of first-trimester ultrasound screening unequal in different regions of their country. Conclusions: First-trimester screening for structural fetal anomalies is widely offered in developed countries, but large differences are reported in availability and use of screening protocols, the extent of anatomy assessment, training and experience of sonographers and quality monitoring systems. Consequently, this results in an unequal offer to parents in developed countries, sometimes even within the same country. Furthermore, as offer and execution differ widely, this has to be taken into account when results of screening policies are scientifically published or compared.</p
Are There Limitations to Exercise Benefits in Peripheral Arterial Disease?
Substantial evidence exists indicating that inactivity contributes to the progression of chronic disease, and conversely, that regular physical activity can both prevent the onset of disease as well as delay the progression of existing disease. To that end “exercise as medicine” has been advocated in the broad context as general medical care, but also in the specific context as a therapeutic, to be considered in much the same way as other drugs. As there are non-responders to many medications, there also are non-responders to exercise; individual who participate but do not demonstrate appreciable improvement/benefit. In some settings, the stress induced by exercise may aggravate an underlying condition, rather than attenuate chronic disease. As personalized medicine evolves with ready access to genetic information, so too will the incorporation of exercise in the context of those individual genetics. The focus of this brief review is to distinguish between the inherent capacity to perform, as compared to adaptive response to active exercise training in relation to cardiovascular health and peripheral arterial disease
Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes
Background
The exceptional physical-chemical properties of carbon nanotubes have lead to their use in diverse commercial and biomedical applications. However, their utilization has raised concerns about human exposure that may predispose individuals to adverse health risks. The present study investigated the susceptibility to cardiac ischemic injury following a single exposure to various forms of multi-walled carbon nanotubes (MWCNTs). It was hypothesized that oropharyngeal aspiration of MWCNTs exacerbates myocardial ischemia and reperfusion injury (I/R injury).
Methods
Oropharyngeal aspiration was performed on male C57BL/6J mice with a single amount of MWCNT (0.01 - 100 μg) suspended in 100 μL of a surfactant saline (SS) solution. Three forms of MWCNTs were used in this study: unmodified, commercial grade (C-grade), and functionalized forms that were modified either by acid treatment (carboxylated, COOH) or nitrogenation (N-doped) and a SS vehicle. The pulmonary inflammation, serum cytokine profile and cardiac ischemic/reperfusion (I/R) injury were assessed at 1, 7 and 28 days post-aspiration.
Results
Pulmonary response to MWCNT oropharyngeal aspiration assessed by bronchoalveolar lavage fluid (BALF) revealed modest increases in protein and inflammatory cell recruitment. Lung histology showed modest tissue inflammation as compared to the SS group. Serum levels of eotaxin were significantly elevated in the carboxylated MWCNT aspirated mice 1 day post exposure. Oropharyngeal aspiration of all three forms of MWCNTs resulted in a time and/or dose-dependent exacerbation of myocardial infarction. The severity of myocardial injury varied with the form of MWCNTs used. The N-doped MWCNT produced the greatest expansion of the infarct at any time point and required a log concentration lower to establish a no effect level. The expansion of the I/R injury remained significantly elevated at 28 days following aspiration of the COOH and N-doped forms, but not the C-grade as compared to SS.
Conclusion
Our results suggest that oropharyngeal aspiration of MWCNT promotes increased susceptibility of cardiac tissue to ischemia/reperfusion injury without a significant pulmonary inflammatory response. The cardiac injury effects were observed at low concentrations of MWCNTs and presence of MWCNTs may pose a significant risk to the cardiovascular system
Elections and Ethnic Civil War
Existing research on how democratization may influence the risk of civil war tends to consider only changes in the overall level of democracy and rarely examines explicitly the postulated mechanisms relating democratization to incentives for violence. The authors argue that typically highlighted key mechanisms imply that elections should be especially likely to affect ethnic groups’ inclination to resort to violence. Distinguishing between types of conflict and the order of competitive elections, the authors find that ethnic civil wars are more likely to erupt after competitive elections, especially after first and second elections following periods of no polling. When disaggregating to the level of individual ethnic groups and conflicts over territory or government, the authors find some support for the notion that ethno-nationalist mobilization and sore-loser effects provoke postelectoral violence. More specifically, although large groups in general are more likely to engage in governmental conflicts, they are especially likely to do so after noncompetitive elections. Competitive elections, however, strongly reduce the risk of conflict. </jats:p
- …