445 research outputs found

    Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB

    Get PDF
    The type III effector protein encoded by avirulence gene B (AvrB) is delivered into plant cells by pathogenic strains of Pseudomonas syringae. There, it localizes to the plasma membrane and triggers immunity mediated by the Arabidopsis coiled-coil (CC)-nucleotide binding (NB)-leucine-rich repeat (LRR) disease resistance protein RPM1. The sequence unrelated type III effector avirulence protein encoded by avirulence gene Rpm1 (AvrRpm1) also activates RPM1. AvrB contributes to virulence after delivery from P. syringae in leaves of susceptible soybean plants, and AvrRpm1 does the same in Arabidopsis rpm1 plants. Conditional overexpression of AvrB in rpm1 plants results in leaf chlorosis. In a genetic screen for mutants that lack AvrB-dependent chlorosis in an rpm1 background, we isolated TAO1 (target of AvrB operation), which encodes a Toll-IL-1 receptor (TIR)-NB-LRR disease resistance protein. In rpm1 plants, TAO1 function results in the expression of the pathogenesis-related protein 1 (PR-1) gene, suggestive of a defense response. In RPM1 plants, TAO1 contributes to disease resistance in response to Pto (P. syringae pathovars tomato) DC3000(avrB), but not against Pto DC3000(avrRpm1). The tao1–5 mutant allele, a stop mutation in the LRR domain of TAO1, posttranscriptionally suppresses RPM1 accumulation. These data provide evidence of genetically separable disease resistance responses to AvrB and AvrRpm1 in Arabidopsis. AvrB activates both RPM1, a CC-NB-LRR protein, and TAO1, a TIR-NB-LRR protein. These NB-LRR proteins then act additively to generate a full disease resistance response to P. syringae expressing this type III effector

    Percy W. Bartlett

    Get PDF

    Students as Apprentice Historians

    Get PDF
    Article published in Teaching History by Lukowitz

    Multirelationale Netzwerkanalyse formaler Organisationsstrukturen

    Get PDF
    Die Analyse komplexer arbeitsteiliger Strukturen ist fuer die Organisationstheorie und -praxis von grosser Bedeutung. Ihr primaeres Ziel ist die Beschreibung der in Organisationen vorherrschenden Wirkungszusammenhaenge, um darauf aufbauend ein Verstaendnis fuer die Funktions- und Verhaltensweisen einer Organisation zu gewinnen und Verbesserungspotentiale und Handlungsimplikationen abzuleiten. Die vorliegende Arbeit entwickelt einen netzwerkanalytischen Ansatz, der es ermoeglicht, unterschiedlichste formalstrukturelle Beziehungen zwischen Organisationseinheiten zu erfassen, abzubilden und zu beschreiben. Einer einheitlichen Methodik folgend, ist der Ansatz dabei derart ausgestaltet, dass er sich auf unterschiedliche organisationsstrukturelle Fragestellungen und Perspektiven anwenden laesst. Damit werden individuell adaptierbare bzw. anwenderspezifische Analysen und Ergebnisse ermoeglicht. Die Arbeit ist wissenschaftstheoretisch dem Bereich netzwerkorientierter Organisationsforschung zuzuordnen, indem sie formale Organisationsstrukturen als multirelationales Netzwerk von Teilaufgaben versteht und als solche modelliert. Damit werden sie einer netzwerkorientierten und quantitativen Analyse zugaenglich gemacht. Die Grundlage fuer die Modellierung bilden Erkenntnisse aus der Organisations- und Netzwerkforschung. Die betriebswirtschaftliche Organisationsanalyse sowie die strukturalistischen Ansaetze der Organisationstheorie liefern die Grundlagen zur Herleitung der Basiselemente und Beziehungsarten sowie der zu analysierenden Dimensionen und Merkmale formaler Organisationsstrukturen. Letztere bilden dabei den Bezugsrahmen zur Entwicklung von Kennzahlen zur Beschreibung formaler Organisationsstrukturen. Die Erkenntnisse der Netzwerkforschung und hier insbesondere der multirelationalen Netzwerkanalyse liefern die Grundlagen zur Herleitung, Operationalisierung und Interpretation multirelationaler Kennzahlen zur Beschreibung und Diagnose formaler Organisationsstrukturen

    Breeding histories and selection criteria for oilseed rape in Europe and China identified by genome wide pedigree dissection

    Get PDF
    Selection breeding has played a key role in the improvement of seed yield and quality in oilseed rape (Brassica napus L.). We genotyped Tapidor (European), Ningyou7 (Chinese) and their progenitors with the Brassica 60 K Illumina Infinium SNP array and mapped a total of 29,347 SNP markers onto the reference genome of Darmor-bzh. Identity by descent (IBD) refers to a haplotype segment of a chromosome inherited from a shared common ancestor. IBDs identified on the C subgenome were larger than those on the A subgenome within both the Tapidor and Ningyou7 pedigrees. IBD number and length were greater in the Ningyou7 pedigree than in the Tapidor pedigree. Seventy nine QTLs for flowering time, seed quality and root morphology traits were identified in the IBDs of Tapidor and Ningyou7. Many more candidate genes had been selected within the Ningyou7 pedigree than within the Tapidor pedigree. These results highlight differences in the transfer of favorable gene clusters controlling key traits during selection breeding in Europe and China

    CapsID: a web-based tool for developing parsimonious sets of CAPS molecular markers for genotyping

    Get PDF
    BACKGROUND: Genotyping may be carried out by a number of different methods including direct sequencing and polymorphism analysis. For a number of reasons, PCR-based polymorphism analysis may be desirable, owing to the fact that only small amounts of genetic material are required, and that the costs are low. One popular and cheap method for detecting polymorphisms is by using cleaved amplified polymorphic sequence, or CAPS, molecular markers. These are also known as PCR-RFLP markers. RESULTS: We have developed a program, called CapsID, that identifies snip-SNPs (single nucleotide polymorphisms that alter restriction endonuclease cut sites) within a set or sets of reference sequences, designs PCR primers around these, and then suggests the most parsimonious combination of markers for genotyping any individual who is not a member of the reference set. The output page includes biologist-friendly features, such as images of virtual gels to assist in genotyping efforts. CapsID is freely available at . CONCLUSION: CapsID is a tool that can rapidly provide minimal sets of CAPS markers for molecular identification purposes for any biologist working in genetics, community genetics, plant and animal breeding, forensics and other fields

    A sequence-anchored genetic linkage map for the moss, Physcomitrella patens

    Get PDF
    The moss Physcomitrella patens is a model for the study of plant cell biology and, by virtue of its basal position in land plant phylogeny, for comparative analysis of the evolution of plant gene function and development. It is ideally suited for ‘reverse genetic’ analysis by virtue of its outstanding ability to undertake targeted transgene integration by homologous recombination. However, gene identification through mutagenesis and map-based cloning has hitherto not been possible, due to the lack of a genetic linkage map. Using molecular markers [amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR)] we have generated genetic linkage maps for Physcomitrella. One hundred and seventy-nine gene-specific SSR markers were mapped in 46 linkage groups, and 1574 polymorphic AFLP markers were identified. Integrating the SSR- and AFLP-based maps generated 31 linkage groups comprising 1420 markers. Anchorage of the integrated linkage map with gene-specific SSR markers coupled with computational prediction of AFLP loci has enabled its correspondence with the newly sequenced Physcomitrella genome. The generation of a linkage map densely populated with molecular markers and anchored to the genome sequence now provides a resource for forward genetic interrogation of the organism and for the development of a pipeline for the map-based cloning of Physcomitrella genes. This will radically enhance the potential of Physcomitrella for determining how gene function has evolved for the acquisition of complex developmental strategies within the plant kingdom

    Positional relationship between the gamete fusion site and the first division plane in the rice zygote

    Get PDF
    In angiosperms, a zygote generally divides into a two-celled proembryo consisting of an apical and a basal cell that possess different cell fates. This first division of the zygote is a putative step in the formation of the apical–basal axis of the proembryo. The gamete fusion activates the egg, and the gamete fusion site on the zygote has been reported to provide a possible cue for subsequent zygotic development and/or embryonic patterning in animals and plants. In this study, the gamete fusion site on the rice zygote was labelled by in vitro fertilization of a rice egg cell with a fluorescence-stained sperm cell. The positional relationship between the gamete fusion site and the division plane formed by zygotic cleavage was monitored using a fixed culture of the fusion site-labelled zygote until the two-celled proembryo stage. The results indicate that gamete fusion sites exist on two-celled proembryos with no relation to the position of the first division plane, and that the gamete fusion site on the rice zygote does not function as a determinant for positioning the zygote division plane

    In Silico Analysis Reveals 75 Members of Mitogen-Activated Protein Kinase Kinase Kinase Gene Family in Rice

    Get PDF
    Mitogen-Activated Protein Kinase Kinase Kinases (MAPKKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in plant growth and development. In the sequenced Arabidopsis genome 80 MAPKKKs were identified and currently being analysed for its role in different stress. In rice, economically important monocot cereal crop only five MAPKKKs were identified so far. In this study using computational analysis of sequenced rice genome we have identified 75 MAPKKKs. EST hits and full-length cDNA sequences (from KOME or Genbank database) of 75 MAPKKKs supported their existence. Phylogenetic analyses of MAPKKKs from rice and Arabidopsis have classified them into three subgroups, which include Raf, ZIK and MEKK. Conserved motifs in the deduced amino acid sequences of rice MAPKKKs strongly supported their identity as members of Raf, ZIK and MEKK subfamilies. Further expression analysis of the MAPKKKs in MPSS database revealed that their transcripts were differentially regulated in various stress and tissue-specific libraries
    corecore