174 research outputs found
What's my line? glass versus paper for cold reading in duologues
Part of an actor's job is being able to cold read: to take words directly from the page and to read them as if they were his or her own, often without the chance to read the lines beforehand. This is particularly difficult when two or more actors need to perform a dialogue cold. The need to hold a paper script in hand hinders the actor's ability to move freely. It also introduces a visual distraction between actors trying to engage with one another in a scene. This preliminary study uses Google Glass displayed cue cards as an alternative to traditional scripts, and compares the two approaches through a series of two-person, cold-read performances. Each performance was judged by a panel of theatre experts. The study finds that Glass has the potential to aid performance by freeing actors to better engage with one another. However, it also found that by limiting the display to one line of script at a time, the Glass application used here makes it difficult for some actors to grasp the text. In a further study, when asked to later perform the text from memory, actors who had used Glass recalled only slightly fewer lines than when they had learned using paper
Towards recognising collaborative activities using multiple on-body sensors
This paper describes the initial stages of a new work on recognising collaborative activities involving two or more people. In the experiment described a physically demanding construction task is completed by a team of 4 volunteers. The task, to build a large video wall, requires communication, coordination, and physical collaboration between group members. Minimal outside assistance is provided to better reflect the ad-hoc and loosely structured nature of real-world construction tasks. On-body inertial measurement units (IMU) record each subject's head and arm movements; a wearable eye-tracker records gaze and ego-centric video; and audio is recorded from each person's head and dominant arm. A first look at the data reveals promising correlations between, for example, the movement patterns of two people carrying a heavy object. Also revealed are clues on how complementary information from different sensor types, such as sound and vision, might further aid collaboration recognition
Understanding, creating, and managing complex techno-socio-economic systems: Challenges and perspectives
Abstract.: This contribution reflects on the comments of Peter Allen [1], Bikas K. Chakrabarti [2], Péter Érdi [3], Juval Portugali [4], Sorin Solomon [5], and Stefan Thurner [6] on three White Papers (WP) of the EU Support Action Visioneer (www.visioneer.ethz.ch). These White Papers are entitled "From Social Data Mining to Forecasting Socio-Economic Crises” (WP 1) [7], "From Social Simulation to Integrative System Design” (WP 2) [8], and "How to Create an Innovation Accelerator” (WP 3) [9]. In our reflections, the need and feasibility of a "Knowledge Accelerator” is further substantiated by fundamental considerations and recent events around the globe. newpara The Visioneer White Papers propose research to be carried out that will improve our understanding of complex techno-socio-economic systems and their interaction with the environment. Thereby, they aim to stimulate multi-disciplinary collaborations between ICT, the social sciences, and complexity science. Moreover, they suggest combining the potential of massive real-time data, theoretical models, large-scale computer simulations and participatory online platforms. By doing so, it would become possible to explore various futures and to expand the limits of human imagination when it comes to the assessment of the often counter-intuitive behavior of these complex techno-socio-economic-environmental systems. In this contribution, we also highlight the importance of a pluralistic modeling approach and, in particular, the need for a fruitful interaction between quantitative and qualitative research approaches. newpara In an appendix we briefly summarize the concept of the FuturICT flagship project, which will build on and go beyond the proposals made by the Visioneer White Papers. EU flagships are ambitious multi-disciplinary high-risk projects with a duration of at least 10 years amounting to an envisaged overall budget of 1 billion EUR [10]. The goal of the FuturICT flagship initiative is to understand and manage complex, global, socially interactive systems, with a focus on sustainability and resilienc
FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way
We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the principles underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our behavior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be created. The financial crisis, international wars, global terror, the spreading of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing serious challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the complex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technology (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly networked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21st century. FuturICT could indeed become one of the most important scientific endeavours ever, by revealing the principles that make socially interactive systems work well, by inspiring the creation of new platforms to explore our possible futures, and by initiating an era of social and socio-inspired innovations. Graphical abstrac
FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way
We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the princi-ples underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our be-havior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be cre-ated. The financial crisis, international wars, global terror, the spread-ing of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing seri-ous challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the com-plex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technol-ogy (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly net-worked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21 st century. FuturICT could indeed become one of the most important scientific endeavours ever, by revealing the principles that make socially inter-active systems work well, by inspiring the creation of new platforms to explore our possible futures, and by initiating an era of social and socio-inspired innovations
Privacy Mining from IoT-based Smart Homes
Recently, a wide range of smart devices are deployed in a variety of
environments to improve the quality of human life. One of the important
IoT-based applications is smart homes for healthcare, especially for elders.
IoT-based smart homes enable elders' health to be properly monitored and taken
care of. However, elders' privacy might be disclosed from smart homes due to
non-fully protected network communication or other reasons. To demonstrate how
serious this issue is, we introduce in this paper a Privacy Mining Approach
(PMA) to mine privacy from smart homes by conducting a series of deductions and
analyses on sensor datasets generated by smart homes. The experimental results
demonstrate that PMA is able to deduce a global sensor topology for a smart
home and disclose elders' privacy in terms of their house layouts.Comment: This paper, which has 11 pages and 7 figures, has been accepted BWCCA
2018 on 13th August 201
Integrated Display and Environmental Awareness System - System Architecture Definition
The Integrated Display and Environmental Awareness System (IDEAS) is an interdisciplinary team project focusing on the development of a wearable computer and Head Mounted Display (HMD) based on Commercial-Off-The-Shelf (COTS) components for the specific application and needs of NASA technicians, engineers and astronauts. Wearable computers are on the verge of utilization trials in daily life as well as industrial environments. The first civil and COTS wearable head mounted display systems were introduced just a few years ago and they probed not only technology readiness in terms of performance, endurance, miniaturization, operability and usefulness but also maturity of practice in perspective of a socio-technical context. Although the main technical hurdles such as mass and power were addressed as improvements on the technical side, the usefulness, practicality and social acceptance were often noted on the side of a broad variety of humans' operations. In other words, although the technology made a giant leap, its use and efficiency still looks for the sweet spot. The first IDEAS project started in January 2015 and was concluded in January 2017. The project identified current COTS systems' capability at minimum cost and maximum applicability and brought about important strategic concepts that will serve further IDEAS-like system development
A planetary nervous system for social mining and collective awareness
We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good. Graphical abstrac
- …