3,506 research outputs found
Spectral Signatures of Gravitationally Confined Thermonuclear Supernova Explosions
We consider some of the spectral and polarimetric signatures of the
gravitational confined detonation scenario for Type Ia supernova explosions. In
this model, material produced by an off-center deflagration (which itself fails
to produce the explosion) forms a metal-rich atmosphere above the white dwarf
surface. Using hydrodynamical simulations, we show that this atmosphere is
compressed and accelerated during the subsequent interaction with the supernova
ejecta. This leads ultimately to the formation of a high-velocity pancake of
metal-rich material that is geometrically detached from the bulk of the ejecta.
When observed at the epochs near maximum light, this absorbing pancake produces
a highly blueshifted and polarized calcium IR triplet absorption feature
similar to that observed in several Type~Ia supernovae. We discuss the
orientation effects present in our model and contrast them to those expected in
other supernova explosion models. We propose that a large sample of
spectropolarimetric observations can be used to critically evaluate the
different theoretical scenarios.Comment: 4 pages, 3 figures. To appear in ApJ Letters. For higher resolution
images and movies see http://panisse.lbl.gov/~dnkasen/gcd.htm
Spurious Eccentricities of Distorted Binary Components
I discuss the effect of physical distortion on the velocities of close binary
components and how we may use the resulting distortion of velocity curves to
constrain some properties of binary systems, such as inclination and mass
ratio. Precise new velocities for 5 Cet convincingly detect these distortions
with their theoretically predicted phase dependence. We can even use such
distortions of velocity curves to test Lucy's theory of convective gravity
darkening. The observed distortions for TT Hya and 5 Cet require the contact
components of those systems to be gravity darkened, probably somewhat more than
predicted by Lucy's theory but clearly not as much as expected for a radiative
star. These results imply there is no credible evidence for eccentric orbits in
binaries with contact components. I also present some speculative analyses of
the observed properties of a binary encased in a non-rotating common envelope,
if such an object could actually exist, and discuss how the limb darkening of
some recently calculated model atmospheres for giant stars may bias my resuts
for velocity-curve distortions, as well as other results from a wide range of
analyses of binary stars.Comment: 14 pp, 2 tables, 12 fig; under review by Ap
Measurability of kinetic temperature from metal absorption-line spectra formed in chaotic media
We present a new method for recovering the kinetic temperature of the
intervening diffuse gas to an accuracy of 10%. The method is based on the
comparison of unsaturated absorption-line profiles of two species with
different atomic weights. The species are assumed to have the same temperature
and bulk motion within the absorbing region. The computational technique
involves the Fourier transform of the absorption profiles and the consequent
Entropy-Regularized chi^2-Minimization [ERM] to estimate the model parameters.
The procedure is tested using synthetic spectra of CII, SiII and FeII ions. The
comparison with the standard Voigt fitting analysis is performed and it is
shown that the Voigt deconvolution of the complex absorption-line profiles may
result in estimated temperatures which are not physical. We also successfully
analyze Keck telescope spectra of CII1334 and SiII1260 lines observed at the
redshift z = 3.572 toward the quasar Q1937--1009 by Tytler {\it et al.}.Comment: 25 pages, 6 Postscript figures, aaspp4.sty file, submit. Ap
Recommended from our members
AHRQ Series on Improving Translation of Evidence: Perceived Value of Translational Products by the AHRQ EPC Learning Health Systems Panel.
Thermal infrared observations of Mars (7.5-12.8 microns) during the 1990 opposition
Thirteen spectra of Mars, in the 7.5 to 12.8 micron wavelength were obtained on 7 Dec. 1990 from the Infrared Telescope Facility (IRTF). For these observations, a grating with an ultimate resolving power of 120 to 250 was used and wavelengths were calibrated for each grating setting by comparison with the absorption spectrum of polystyrene measured prior to each set of observations. By sampling the Nyquist limit at the shortest wavelengths, an effective resolving power of about 120 over the entire wavelength range was achieved. A total of four grating settings were required to cover the entire wavelength region. A typical observing sequence consisted of: (1) positioning the grating in one of the intervals; (2) calibrating the wavelength of positions; and (3) obtaining spectra for a number of spots on Mars. Several observations of the nearby stellar standard star, alpha Tauri, were also acquired throughout the night. Each Mars spectrum represents an average of 4 to 6 measurements of the individual Mars spots. As a result of this observing sequence, the viewing geometry for a given location or spot on Mars does not change, but the actual location of the spot on Mars's surface varies somewhat between the different grating settings. Other aspects of the study are presented
The Inner Rim of YSO Disks: Effects of dust grain evolution
Dust-grain growth and settling are the first steps towards planet formation.
An understanding of dust physics is therefore integral to a complete theory of
the planet formation process. In this paper, we explore the possibility of
using the dust evaporation front in YSO disks (`the inner rim') as a probe of
the dust physics operating in circumstellar disks. The geometry of the rim
depends sensitively on the composition and spatial distribution of dust. Using
radiative transfer and hydrostatic equilibrium calculations we demonstrate that
dust growth and settling can curve the evaporation front dramatically (from a
cylindrical radius of about 0.5 AU in the disk mid-plane to 1.2 AU in the disk
upper layers for an A0 star). We compute synthetic images and interferometric
visibilities for our representative rim models and show that the current
generation of near-IR long-baseline interferometers (VLTI, CHARA) can strongly
constrain the dust properties of circumstellar disks, shedding light on the
relatively poorly understood processes of grain growth, settling and turbulent
mixing.Comment: 26 pages, 9 figures. Accepted for publication in Ap
Recommended from our members
Decision Aid Implementation and Patients' Preferences for Hip and Knee Osteoarthritis Treatment: Insights from the High Value Healthcare Collaborative.
Background:Shared decision making (SDM) research has emphasized the role of decision aids (DAs) for helping patients make treatment decisions reflective of their preferences, yet there have been few collaborative multi-institutional efforts to integrate DAs in orthopedic consultations and primary care encounters. Objective:In the context of routine DA implementation for SDM, we investigate which patient-level characteristics are associated with patient preferences for surgery versus medical management before and after exposure to DAs. We explored whether DA implementation in primary care encounters was associated with greater shifts in patients' treatment preferences after exposure to DAs compared to DA implementation in orthopedic consultations. Design:Retrospective cohort study. Setting:10 High Value Healthcare Collaborative (HVHC) health systems. Study participants:A total of 495 hip and 1343 adult knee osteoarthritis patients who were exposed to DAs within HVHC systems between July 2012 to June 2015. Results:Nearly 20% of knee patients and 17% of hip patients remained uncertain about their treatment preferences after viewing DAs. Older patients and patients with high pain levels had an increased preference for surgery. Older patients receiving DAs from three HVHC systems that transitioned DA implementation from orthopedics into primary care had lower odds of preferring surgery after DA exposure compared to older patients in seven HVHC systems that only implemented DAs for orthopedic consultations. Conclusion:Patients' treatment preferences were largely stable over time, highlighting that DAs for SDM largely do not necessarily shift preferences. DAs and SDM processes should be targeted at older adults and patients reporting high pain levels. Initiating treatment conversations in primary versus specialty care settings may also have important implications for engagement of patients in SDM via DAs
3D Models for High Velocity Features in Type Ia Supernovae
Spectral synthesis in 3-dimensional (3D) space for the earliest spectra of
Type Ia supernovae (SNe Ia) is presented. In particular, the high velocity
absorption features that are commonly seen at the earliest epochs (
days before maximum light) are investigated by means of a 3D Monte Carlo
spectral synthesis code. The increasing number of early spectra available
allows statistical study of the geometry of the ejecta. The observed diversity
in strength of the high velocity features (HVFs) can be explained in terms of a
``covering factor'', which represents the fraction of the projected photosphere
that is concealed by high velocity material. Various geometrical models
involving high velocity material with a clumpy structure or a thick torus can
naturally account for the observed statistics of HVFs. HVFs may be formed by a
combination of density and abundance enhancements. Such enhancements may be
produced in the explosion itself or may be the result of interaction with
circumstellar material or an accretion disk. Models with 1 or 2 blobs, as well
as a thin torus or disk-like enhancement are unlikely as a standard situation.Comment: 17 pages, 12 figures. Accepted for publication in the Astrophysical
Journa
Near infrared reflectance spectra: Applications to problems in asteroid-meteorite relationships
An observing program designed to search for evidence of ordinary chondrite parent bodies near the 3:1 Kirkwood Gap was carried out in 1985 and 1986. Studies by Wisdom (1985), Wetherill (1985), and subsequent work by Milani et al. (1989) indicate that the 3:1 Kirkwood gap is the most probable source region for the majority of ordinary chondrite meteorites. The diversity of the reflectance spectra among this small data set is surprising. Early work by Gaffey and McCord (1978) showed that the inner region of the main asteroid belt is dominated by high albedo objects with mafic silicate surfaces. One would expect to see mostly spectra with 1- and 2-micron absorption bands based on this earlier work. Only 5 (of 12) spectra have these expected features. The distribution of taxonomic types presented by Gradie and Tedesco (1982) is in most cases a useful simplification of the compositional structure of the asteroid belt. The range of spectral characteristics seen with higher resolution in the near-IR has not been previously reported and is not represented in the standard asteroid taxonomy. Near-IR spectra contain valuable mineralogical information which enhances knowledge of the composition and structure of asteroids
- âŠ