Dust-grain growth and settling are the first steps towards planet formation.
An understanding of dust physics is therefore integral to a complete theory of
the planet formation process. In this paper, we explore the possibility of
using the dust evaporation front in YSO disks (`the inner rim') as a probe of
the dust physics operating in circumstellar disks. The geometry of the rim
depends sensitively on the composition and spatial distribution of dust. Using
radiative transfer and hydrostatic equilibrium calculations we demonstrate that
dust growth and settling can curve the evaporation front dramatically (from a
cylindrical radius of about 0.5 AU in the disk mid-plane to 1.2 AU in the disk
upper layers for an A0 star). We compute synthetic images and interferometric
visibilities for our representative rim models and show that the current
generation of near-IR long-baseline interferometers (VLTI, CHARA) can strongly
constrain the dust properties of circumstellar disks, shedding light on the
relatively poorly understood processes of grain growth, settling and turbulent
mixing.Comment: 26 pages, 9 figures. Accepted for publication in Ap