825 research outputs found

    Nonlinear fiber element modeling of RC bridge piers considering inelastic buckling of reinforcement

    Get PDF
    An advanced modelling technique is developed to model the nonlinear cyclic response of circular RC columns using fibre-based section discretisation method. A comparison between different reinforcing steel models is made. Through a comprehensive parametric study the influence of inelastic buckling of vertical reinforcement on the cyclic response of circular RC columns is investigated. The results have been compared and validated against a set of experimental datasets. The proposed calibrated model accounts for the influence of inelastic buckling of vertical reinforcement and interaction of stiffness of horizontal ties reinforcement with vertical reinforcement. The model also accounts for the fracture of vertical bars due to low-cycle high-amplitude fatigue degradation. Therefore, this model is able to predict the nonlinear cyclic response of circular RC columns up to complete collapse. The results show that the existing uniaxial material models of reinforcing bars that are calibrated using stress-strain behaviour of isolated bars cannot represent the behaviour of reinforcing bars inside RC columns. Moreover, it is found that the buckling length of vertical reinforcement has a significant influence on the pinching response of RC columns and also reduces the low-cycle fatigue life of buckled reinforcemen

    Computational Modelling Strategies for Nonlinear Response Prediction of Corroded Circular RC Bridge Piers

    Get PDF
    A numerical model is presented that enables simulation of the nonlinear flexural response of corroded reinforced concrete (RC) components. The model employs a force-based nonlinear fibre beam-column element. A new phenomenological uniaxial material model for corroded reinforcing steel is used. This model accounts for the impact of corrosion on buckling strength, post-buckling behaviour and low-cycle fatigue degradation of vertical reinforcement under cyclic loading. The basic material model is validated through comparison of simulated and observed response for uncorroded RC columns. The model is used to explore the impact of corrosion on the inelastic response of corroded RC columns

    Experimental and numerical investigation of flexural concrete wall design details

    Get PDF
    Reinforced concrete structural walls are common in mid- to high-rise structures in high seismic regions, and are expected to have good strength and ductility characteristics if designed in accordance with ACI 318-14. However, experimental and analytical investigations of reinforced concrete structural walls and isolated boundary element prisms indicate that the existing design provisions may be insufficient to provide ductile, flexure-dominated response under cyclic loading. Walls designed with an ACI compliant boundary element length are susceptible to shear-compression failures below the maximum ACI allowable shear stress of 10Acv√fc’. Also of concern is the frequent use of thinner walls in modern design; as the wall’s cross-sectional aspect ratio increases, such brittle shear-compression failures occur at even smaller shear stress values. In regards to detailing, special boundary elements with intermediate cross-ties exhibit a minimal improvement in confinement compared to ordinary boundary elements. This response can be linked to inadequacies in multiple code design parameters, including: vertical spacing and area of confinement steel, horizontal spacing and type of restraint to longitudinal bars, and development length provided for transverse reinforcement. Recent in-field wall failures have prompted concerns related to the minimum code required vertical and horizontal web shear reinforcement, as well as the relative amount of vertical-to-horizontal web steel. This paper examines ACI 318-14 special boundary element and web reinforcement provisions and provides design recommendations intended to improve wall performance as compared with current ACI requirements

    Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility

    Get PDF
    In an experiment at the Riga sodium dynamo facility, a slowly growing magnetic field eigenmode has been detected over a period of about 15 seconds. For a slightly decreased propeller rotation rate, additional measurements showed a slow decay of this mode. The measured results correspond satisfactory with numerical predictions for the growth rates and frequencies

    From ‘other’ to involved: User involvement in research: An emerging paradigm

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 The Author(s). This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted.This article explores the issue of ‘othering’ service users and the role that involving them, particularly in social policy and social work research may play in reducing this. It takes, as its starting point, the concept of ‘social exclusion’, which has developed in Europe and the marginal role that those who have been included in this construct have played in its development and the damaging effects this may have. The article explores service user involvement in research and is itself written from a service user perspective. It pays particular attention to the ideological, practical, theoretical, ethical and methodological issues that such user involvement may raise for research. It examines problems that both research and user involvement may give rise to and also considers developments internationally to involve service users/subjects of research, highlighting some of the possible implications and gains of engaging service user knowledge in research and the need for this to be evaluated

    Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral bridge

    Get PDF
    Purpose In this paper the impact of corrosion of reinforcing steel in RC columns on the seismic performance of a multi-span concrete integral bridge is explored. A new constitutive model for corroded reinforcing steel is used. This model simulates the buckling of longitudinal reinforcement under cyclic loading and the impact of corrosion on buckling strength. Cover concrete strength is adjusted to account for corrosion induced damage and core concrete strength and ductility is adjusted to account for corrosion induced damage to transverse reinforcement. This study evaluates the impact which chloride induced corrosion of the reinforced concrete columns on the seismic fragility of the bridge. Fragility curves are developed at a various time intervals over the lifetime. The results of this study show that the bridge fragility increases significantly with corrosion. Design/methodology/approach This paper firstly evaluates the impact which chloride induced corrosion of the columns has on bridge fragility. Finally, fragility curves are developed at various time intervals over the lifetime of the bridge. The results of this study show that the bridge fragility increases significantly with corrosion. Findings 1) It was found that columns dominate the system fragility at all levels of deterioration. Therefore, it highlights the importance of good column design in terms of both seismic detailing and durability for this integral bridge type. 2) In terms of foundation settlement coupled with corrosion, it was found that settlements on the order of the discrete levels adopted for this study increased the system fragility at the slight, moderate and extensive damage states but their impact at the complete damage states is negligible. 3) Ageing considerations are currently neglected in widespread regional risk assessment and loss estimation packages for transport infrastructure. The result of this study provides a methodology that enables bridge managers and owners to employ in seismic risk assessment of existing aging bridges. Originality/value The modelling technician developed in this paper considers the impact of detailed corrosion damaged of RC column on nonlinear dynamic response and fragility of a corroded integral bridge under earthquake loading. The current modelling technique is the most comprehensive 3D fibre element model for seismic analysis and risk assessment of corroded bridges. </jats:sec

    Spherical Slepian functions and the polar gap in geodesy

    Full text link
    The estimation of potential fields such as the gravitational or magnetic potential at the surface of a spherical planet from noisy observations taken at an altitude over an incomplete portion of the globe is a classic example of an ill-posed inverse problem. Here we show that the geodetic estimation problem has deep-seated connections to Slepian's spatiospectral localization problem on the sphere, which amounts to finding bandlimited spherical functions whose energy is optimally concentrated in some closed portion of the unit sphere. This allows us to formulate an alternative solution to the traditional damped least-squares spherical harmonic approach in geodesy, whereby the source field is now expanded in a truncated Slepian function basis set. We discuss the relative performance of both methods with regard to standard statistical measures as bias, variance and mean-square error, and pay special attention to the algorithmic efficiency of computing the Slepian functions on the region complementary to the axisymmetric polar gap characteristic of satellite surveys. The ease, speed, and accuracy of this new method makes the use of spherical Slepian functions in earth and planetary geodesy practical.Comment: 14 figures, submitted to the Geophysical Journal Internationa
    • 

    corecore