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Abstract

Reinforced concrete structural walls are common in mid- to high-rise structures in high seismic
regions, and are expected to have good strength and ductility characteristics if designed in
accordance with ACI 318-14. However, experimental and analytical investigations of reinforced
concrete structural walls and isolated boundary element prisms indicate that the existing design
provisions may be insufficient to provide ductile, flexure-dominated response under cyclic
loading. Walls designed with an ACI compliant boundary element length are susceptible to
shear-compression failures below the maximum ACI allowable shear stress of IOACV\/fC'. Also of
concern is the frequent use of thinner walls in modern design; as the wall’s cross-sectional aspect
ratio increases, such brittle shear-compression failures occur at even smaller shear stress values.
In regards to detailing, special boundary elements with intermediate cross-ties exhibit a minimal
improvement in confinement compared to ordinary boundary elements. This response can be
linked to inadequacies in multiple code design parameters, including: vertical spacing and area of
confinement steel, horizontal spacing and type of restraint to longitudinal bars, and development
length provided for transverse reinforcement. Recent in-field wall failures have prompted
concerns related to the minimum code required vertical and horizontal web shear reinforcement,
as well as the relative amount of vertical-to-horizontal web steel. This paper examines ACI 318-
14 special boundary element and web reinforcement provisions and provides design
recommendations intended to improve wall performance as compared with current ACI
requirements.



INTRODUCTION

Many mid- to high-rise reinforced concrete buildings in seismic regions utilize structural walls as
a primary lateral-load resisting system. Historically, these walls have performed well in that the
damage was moderate (limited to cracking and cover spalling). However, considerable damage
to structural wall buildings has been observed in recent earthquakes. This has, to some degree,
eroded engineers’ confidence in wall performance and current design provisions. There have
been notable cases both in New Zealand (2010-11) and in the Chile (2010) earthquakes of
significant damage including web or boundary element crushing as well as out-of-plane
buckling, especially in flanged walls with thin webs (Figure 1).

(a) (b)
Figure 1. Damage to: (1) Boundary Element and (b) Wall Web in Chile 2010 (Moehle 2010)

Review of damage from these earthquakes indicated that demand levels, cross sectional shapes,
boundary element detailing and other aspects of design require further study (Moehle 2010). The
current research was undertaken to examine these issues, which include shear stress demand,
web reinforcement, and boundary element confinement. Specifically, these issues were studied in
two phases using different research approaches. First, an experimental program was undertaken
to examine boundary element detailing through testing of rectangular prisms; the experiments
studied spacing of the transverse reinforcement, restraint pattern, and transverse reinforcement
ratio as well as type of restraint, in particular studying cross ties and continuous hoops. Second, a
computational parametric study (using experimentally validated finite element analyses) was
conducted to study the impact of web reinforcement and shear stress demands on the
deformability of walls. The results of both the experimental and computational studies are used
to develop new design recommendations.



IMPACT OF BOUNDARY ELEMENT DETAILING: EXPERIMENTAL
INVESTIGATION

The investigation of boundary element details involved analysis of experimental results from
rectangular concrete prisms in three test programs by Mander et al. (1988), Massone et al.
(2014), and Welt (2015). This database permitted the study of a wide range of values for
detailing parameters to determine the impact on normalized peak confined stress (f..’/f.”) and
ultimate strain capacity (&.,). The research study was conducted with the aim of developing more
rigorous detailing classification levels to improve the confined response of rectangular boundary
elements.

VERTICAL SPACING OF TRANSVERSE REINFORCEMENT

Of all the parameters studied, the vertical spacing of transverse reinforcement was determined to
have the most significant effect on the performance of rectangular concrete prisms. Research
(e.g., (Rodriguez, Botero, & Villa, 1999)) indicates that the transverse vertical spacing should
not exceed six times the longitudinal bar diameter (6dp) to avoid premature buckling of
longitudinal reinforcement. Figure 2 shows the relationship of the ratio of vertical spacing of
transverse reinforcement-to-longitudinal bar diameter (s/dp) versus the response metrics of
confined stress and strain. Compliant designs near the 6d, vertical spacing limit show only
modest improvements in confined stress (approximately 1.25f.”) and strain (less than 1%) versus
non-compliant designs. These response values are much lower than those expected for a well
confined section (Mander et al., 1988). However, if the spacing is reduced to 4dj, the stress and
strain capacities are greatly increased. This trend is also noted for tests with spacings of 2d}, and
3d, (Mander et al., 1988); though reducing the required spacing to these levels may limit
constructability.
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Figure 2. (a) Stress (f..”/f.’) and (b) Strain (e.,) Capacity vs. Vertical Spacing of Confining Steel

VOLUMETRIC TRANSVERSE REINFORCEMENT RATIO

The volumetric confinement reinforcement ratio (o) is difficult to modify in isolation such that
all other detailing parameters remain constant. In practice, py is typically modified by varying the
vertical and/or horizontal spacing of transverse reinforcement. Figure 3 indicates that stress and



strain capacities are dependent on p, and specimens with designs near the ACI318-14 threshold
have very low values of f..” and &,.
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Figure 3. (a) Stress (f..’/f.’) and (b) Strain (&.,) Capacity vs. Volumetric Transverse Reinf. Ratio

CROSS-TIE DEVELOPMENT LENGTH

Reinforcing bars are detailed to ensure the bar can develop the yield strength, at a minimum. For
hooked bars (cross-ties fall into this category), the bar length must be I or greater; however,
there is no explicit requirement that cross-ties be fully developed. To study the effect of cross-
ties that do not meet the ACI318-14 minimum development length, the experimental test data
were divided into two categories: Iy, ¢r < lan, acr and ly, cr> lan, acr (open versus solid markers in
Figures 2-3, respectively). The results clearly show that fully developed cross-ties enhance the
response of rectangular reinforced concrete prisms. Figure 4 depicts (i) the idealized demand
and (i1) damage to the cross-ties with insufficient development length. Figure 4(b) illustrates
how hooks open after cover spalling which results in a dramatic reduction in the confining effect
of the cross-ties.
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Figure 4. Response of Crossties with Inadequate Development Length (/4 cr < lng, acr)



PATTERN OF LONGITUDINAL BAR RESTRAINT

The experimental results of rectangular prism tests by Welt (2015) and Massone et al. (2014)
indicated that restraining each longitudinal bar improved compressive response. Figure 5 shows
the relationship of bar restraint to the response metrics of confined stress and strain. These plots
include only specimens with adequate development and are subdivided into three categories: (i)
all bars restrained and s < 3d}, (i1) all bars restrained and s = 4d},_and (iii) alternate bars restrained
and s = 4d,. All three categories of specimens were able to achieve a strain capacity at or in
excess of 2%, a value much larger than the specimens with inadequate development or widely
spaced cross-ties. Examination of test prisms with s = 4d}, indicated that specimens with alternate
bar restraint exhibit lower stress and strain capacities than those with each bar restrained. Though
the pattern of bar restraint does impact compressive response, it is less significant than the effects
of boundary element detailing parameters of vertical spacing or development length.

HORIZONTAL SPACING OF TRANSVERSE REINFORCEMENT

Based on ACI 318-14, horizontal spacing of the confining reinforcement (4,) must be no more
than 14 in. Figure 5 assesses this A, limit using the experimental data by scaling specimen
spacing to a full-scale wall by a multiplier of 12 in. divided by the wall thickness (12-in./b). This
conversion assumes a full-scale wall to be 12 in thick. While none of the specimens were
detailed for the ACI limit of A, =14, specimens with reduced A, values exhibit an improved
confinement capacity. There is an additional horizontal bar spacing limit in ACI318-14 that
specifies the maximum distance between restrained longitudinal horizontal as 25/3. Examination
of Figure 5 indicates that this horizontal spacing (2b/3 corresponding to &, =8) is adequate as it
results in a peak stress at or in excess of 1.5 times the unconfined stress and a strain capacity of
at least 2.0%.
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Pattern of Bar Restraint and Horizontal Spacing



IMPACT OF SHEAR STRESS AND WEB REINFORCEMENT ON DUCTILITY OF
WALLS: ANALYTICAL INVESTIGATION

Review of prior experimental and in-field performance of both planar and non-planar reinforced
concrete wall configurations shows that, rather than the expected flexural mode dominated by
tensile response, there are many occurrences where compression failures are observed in the
boundary element and/or web of walls. In order to more extensively examine the design
parameters that impact the deformability of walls a computational parametric study was
undertaken using the ATENA 3D software developed by Cervenka Consulting
(http://www.cervenka.cz) which is a high-resolution, non-linear finite element analysis tool that
employs three-dimensional elements and is specifically designed for simulating the response of
reinforced concrete structures. The following sections of the paper describe the process
conducted by Whitman (2015) in order to validate the ATENA 3D numerical modelling
approach against existing experimental wall test results, followed by a discussion of the findings
for a selection of design parameters investigated in the study including the impact of shear stress
demand, cross-sectional aspect ratio, boundary element length, and web reinforcement ratios on
wall deformation and ductility.

VALIDATION OF NUMERICAL MODEL

Whitman (2015) utilized eight (8) experimentally-tested slender planar reinforced concrete walls
subjected to a quasi-static cyclic loading in order to calibrate the numerical model in ATENA
3D. Each of the walls exhibited flexural-compression type failures; this was intentional as the
objective of the remainder of the parametric study was to investigate walls with significant
compressive damage. The eight walls represented a range of axial load and cross-sectional aspect
ratios as well as shear stress demands. The calibration process focused on selection of concrete
and steel material constitutive modelling parameters, percentage of longitudinal and confinement
steel represented as smeared versus discrete reinforcing bars, and mesh discretization. The
objective with the calibration was to accurately simulate the measured strength, stiffness, drift
capacity, ductility, and failure mode of the walls.

Subsequent to the calibration, Whitman (2015) was able to successfully simulate a set of
nineteen (19) slender planar wall tests. Table 1 summarizes the statistics for the ratio of
simulated-to- measured values for stiffness, maximum strength and displacement at onset of
strength loss for these simulated wall specimens. Figure 6 shows simulated and measured load-
deformation response for select walls. In all cases, the drift corresponding to loss of lateral load
carrying capacity was correctly simulated.

Table 1. Statistics for Ratio of Simulated to Measured Response Quantities

Yield Stiffness Max. Strength Displacement
Median 0.91 0.99 0.98
Coefficient of Variation 0.29 0.05 0.06

Using the validated finite element model, Whitman (2015) conducted a parametric study to
investigate the impact of various design parameters on the response of planar flexure-controlled
walls. Whitman found that for planar walls, drift capacity and failure mode depends on: (i) the



shear demand, (ii) the cross-sectional aspect ratio of the wall (CSAR = [,/b, i.e., the length of the
wall, /,,, divided by the width of the wall, b) and (ii1) the length of the boundary element, /.,
relative to the neutral axis depth, c.
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Figure 6. Simulated and measured response histories for planar walls (Whitman 2015)

IMPACT OF SHEAR STRESS DEMAND AND BOUNDARY ELEMENT LENGTH

The impact of shear stress demand and CSAR on the minimum principal stress distribution is
illustrated in Figures 7 and 8, respectively. In both figures, the simulated stress contours from
ATENA 3D are shown for loads corresponding to: (i) nominal flexural strength (Mpese/M, = 1),
(i1) a displacement demand halfway between nominal flexural strength and the point at which
strength loss initiated, and (iii) the point at which lateral strength loss initiated (designated as
“Failure” in the figures).

The wall specimens in Figure 7 have nearly identical cross-sectional aspect ratios of
approximately 20, which is similar to that found in modern construction (e.g., a CSAR=20 would
be equivalent to an 18-in thick by 30-foot long wall). The wall shown in Figure 7a was subjected
to a low shear stress demand of 1.1f, ‘A, (with f.” in psi) and fails due to longitudinal bar rupture
(BR failure) based on the failure classification procedure described in Whitman (2015). There
does not seem to be a notable change in the minimum principal stress prior to and at failure.



High minimum principal stresses are able to be contained within the boundary element, rather
than the boundary element losing compressive strength and these demands transferring to the
wall web. In contrast, the wall shown in Figure 7b was subjected to a relatively high shear stress
demand of 6.4\/fC'Ag (with ¢’ in psi) and fails due to compression-shear failure at the web (CS
failure). The minimum principal stress contours in Figure 7b are distinct from those in Figure 7a
and show significant variation with increasing drift demand. The higher shear stress demand on
this wall results in more heavily-loaded, diagonal compression struts spanning from the tension
region near the top of the wall to the compressive region at the base of the wall and results in a
region of high compressive demands along the base of the wall. There are high minimum
principal stress values within and outside of the boundary region, which indicates that there is
significant compressive demand on the wall web. A compression-shear failure initiates at the
web-boundary element interface where concrete crushing is observed, this reduction in
compressive capacity is apparent in the stress contours at the base of the wall in the boundary
element as they progress from green in the Mpase/M, = 1 image to yellow and finally red at
failure.
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Figure 7. Minimum principal stress contours for RC wall specimens with approximately the
same CSAR and different shear stress demands



Figure 8 shows the impact of cross-sectional aspect ratio. The two simulated walls have
approximately the same shear stress demand (~6Vf.”) but different cross-sectional aspect ratios;
the wall in Figure 8a has CSAR = 8, while the wall in Figure 8b has CSAR = 21. For the low
CSAR wall, high stresses are predominately contained within the boundary element and concrete
degradation also occurs exclusively in this confined region; the high CSAR wall has high
stresses extending outside of the boundary element into the unconfined wall web and exhibits
concrete crushing which initiates at the web-boundary element interface. This results suggest that
walls subject to relatively high shear stress demands fail in a more brittle manner if the
corresponding CSAR ratio is high and the boundary element is not able to sustain the high
compressive demands such that the wall web is also heavily stressed.
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For walls with sufficient shear strength in order to achieve flexural-dominated response, the
failure mode can be classified as: (i) bar rupture (BR) as shown in Figure 7a, (ii) compressive
failure in the boundary element (CB) as shown in Figure 8a, or (3) compressive-shear (CS)
failure in the web adjacent to the boundary element as a result of the shear stresses, as shown in
Figure 7b and Figure 8b. Figure 9 includes fragility curves that describe the drift corresponding
to probability of wall failure for each of the three failure modes. It is clear that walls with a CS
failure mode have much lower drift capacities than walls that fail in BR or CB modes.
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Figure 9. Fragility Curves for Different Wall Failure Modes

The data that has been presented for the parametric thus far show that the CS failure mode is a
result of the high minimum principal stresses outside of the boundary element. To explore the
impact of the boundary element length on the failure mode and drift capacity of walls, a
parametric study was undertaken. Three reference models with different confined boundary
element length-to-wall-length (/gp/l,,) were developed; these reference models investigated walls
with Ipg in excess of the ACI minimum confined boundary element length of ¢/2 and ¢ - 0.11,.
The length of the boundary element and shear stress demand were then varied for the remaining
models. In all, thirty (30) additional wall simulations were developed in ATENA 3D.

Figure 10 summarizes the results of the parametric study related to boundary element length.
Figure 10a plots the failure mode as a function of shear stress demand and normalized boundary
element length (/gp/c) where CSAR=20 (compression-shear failures are of considerable concern
for walls with higher CSAR ratios). For walls with a confined boundary element length (Igg) less
than the neutral axis depth at nominal strength, ¢, and moderate to high levels of shear stress
demand (4-8\f.’ psi), failure resulted from crushing of the web and boundary element, as
indicated by the red markers associated with CS failure. However, walls where the full
compression depth (¢) was confined sustained a CB or BR failure CS which results in larger drift
capacities, as indicated by Figure 10b.

Figure 10b plots the drift capacity for selected simulated (circular marker) and experimental
(diamond marker) walls. The results show that (1) the tested walls have large confined lengths,
in excess of 0.8/gg, and (2) increasing the confined length increases the drift capacity for walls of



a given length (note that each color represents a single wall length with the confined length and
shear stress varied).
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Figure 10. Impact of (a) Boundary Element Length on Failure Mode and (b) Drift Capacity

An expanded investigation into the impact of boundary element length was undertaken in
Behrouzi (2016) with a CSAR=20. Figure 11 is a bar chart indicating the percent difference in
drift and displacement ductility that results from increasing the boundary element length from
ACI compliant to the full neutral axis depth, c¢. These results are categorized based on specific
shear stress demand level of 4.5, 6.0, and 9.0\/fc’Aw. This figure indicates that “extended”
boundary element walls generally have a better response for deformation and ductility strength
metrics than walls with an ACI compliant boundary element length. Increasing the length of the
boundary element to the full neutral axis appears to have modest benefits in terms of drift
capacity at an average of 8% improvement. For the deformation and ductility metrics, it appears
that walls subject to high shear stress demands, particularly 9.0Vf.'d.,, are less predictable in
their response possibly due to the brittle nature of these walls.
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IMPACT OF WEB REINFORCEMENT

The minimum web reinforcement ratios in RC walls precedes the advent of modern seismic
design. At present, the minimum distributed web (or shear) reinforcement ratio for special



structural walls in both the vertical and horizontal directions is 0.0025, and has been since the
introduction of seismic design provisions for walls in ACI318-71. Unassociated with specific
seismic design provisions, the 0.0025 value first appeared in the 1910 NACU Standard as the
minimum total reinforcement ratio required for a wall. The only notable exceptions that occur
between 1910 and 1971 for the fotal reinforcement ratio are in 1920 (where no explicit minimum
reinforcement ratio was provided for walls), as well as 1956 and 1963 (where vertical
reinforcement ratio minimum was reduced to 0.0015, though the horizontal ratio remained
0.0025). This historic timeline shows that the minimum web reinforcement ratio values used
today are rooted in pre-seismic requirements from over a hundred years ago.

The shear design requirements have also evolved very little over time since the formal inclusion
of seismic provisions in ACI 318-71. Originally shear capacity was calculated @V, = (V. + V5)
where V. = 2(\/j; 'bd) and Vi = (A, uf,d/s;. This changed in ACI 318-83 when the code became
more consistent with the current approach of calculating V, = Acv(ac\/fc' + pyufy), where, h,/l,, 2
1.5 2 a. = 3.0, h,/l, 2 2.0 2 a. = 2.0, and varied linearly in between these values. The
maximum shear limit on an individual wall has been V,, < 10\/fc 'A., since ACI 318-71. Note that
there were some changes in language or variable designations in these expressions, but the intent
of these code provisions have not changed for the last 30-40 years.

The impact of increasing the web reinforcement beyond the ACI minimum (beyond what is
required to resist shear) has not been studied. In addition, significant earthquake damage is
sustained by lightly reinforced concrete walls, leading to early web reinforcement fracture.
However, there are limited existing experimental test data related to the response of slender walls
with varying vertical and/or horizontal web reinforcement ratios. A parametric study was
conducted using the modeling approach described above to study the impact of shear stress
demand coupled with web reinforcement on the ductility of planar walls.

The slender concrete walls in the parametric study were designed to explore the impact of
varying levels of vertical and horizontal web reinforcement for different shear stress demand
levels (4.5, 6.0, and 9.0Vf.'A., with f ' .in psi). The primary interest in the study is evaluating the
potential deformation and ductility gains for walls with moderate-to-high shear stress demands
when designed in excess of the minimum web reinforcement ratios: (i) > 0.0025 for both vertical
and horizontal steel, and (ii) V,/V, < 0.75 for horizontal steel. The resulting vertical and
horizontal reinforcement ratios in the parametric wall study range from 0.25% to approximately
1.0%; the upper bound was set so that designs did not significantly exceed the 0.25% minimum.

Each of the walls in the study were designed for two different boundary element length
scenarios: the ACI 318-14 compliant length and a length approximately equal to the neutral axis
depth, as was used by Whitman (2015) in the study described above. In all, 45 walls were
designed. The resulting distribution of shear stress demands, shear demand-capacity ratios
(Vu/Vyu) and horizontal reinforcement ratio in the web (Pyen,n) as shown in Figure 12. All of these
models had a boundary element length equal to the ACI 318-14 required length, the greater of
(¢/2, c-0.11,). In addition, the confined length was increased to ¢ for each of the models, as
indicated in Figure 13. In all of the remaining figures, models with ACI-compliant boundary
element lengths, /g, will be indicated by a hollow marker and models with increased /g values
will be indicated with filled markers. Although other parameters were varied, these two



parameters had the largest influence on drift capacity and ductility. Additional information on the
study can be found in Behrouzi (2016).
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Shear stress demand, V,,/\/fC 'A.v, 1s the most influential parameter that was investigated in the
parametric study. Figure 14 indicates that there is a strong negative correlation between shear
stress and deformation/ductility. Walls with high shear stress demand 9.0Vf,'A.,, exhibit a very
narrow band of response as indicated by notably smaller standard deviation values compared to
other walls.
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The data in Figure 15 indicates that for ACI compliant walls there is a strong negative
correlation between shear demand-to-capacity, V,/V,, and deformation/ductility. This negative
correlation is not as pronounced for “extended” boundary element walls. These findings suggest

that using a smaller V,/V, value (or, a more conservative shear design) has benefits in terms of
deformation/ductility for walls.
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Figure 15. Impact of Shear Demand-Capacity Ratio on Drift Capacity
and Displacement Ductility



DESIGN RECOMMENDATIONS

Based on the research, the following design recommendations are made:

1. The boundary element confinement pattern, horizontal spacing and restraint pattern
should follow the provisions for high-axial-stress columns, specifically ACI 318-14
Section 18.7.5.2, which requires every bar to be restrained, and a limit on A, of 8 in. It is
of note that even at M, the axial stress in the boundary element will exceed 0.3fc’ which
is the axial stress limit which triggers ACI 318-14.

2. The confined length should be increased with an increase in the shear stress demand as
follows: Iy, = ¢( V,,/(S(\/f’cAg))) where c is the largest neutral axis depth calculated for the
factored axial force and nominal moment strength consistent with 8, and 4 > V,/( xf "Ayg)
< 8 which limits the boundary element length to values between 0.5¢ and c.

3. For walls expected to achieve high ductility capacities, V,/V, should be limited to 0.5

CONCLUDING REMARKS

The research studies described herein were undertaken to study and modify current design
recommendations to improve the seismic performance of special RC walls; seismic performance
is defined by both the damage sustained by the wall and its displacement ductility capacity. The
studies used advanced experimental and analytical research approaches to investigate the
parameters that were deemed to be most influential, specifically boundary element detailing,
shear stress demand and web reinforcement. The results were compelling indicators that
improving the boundary element detailing, by means of reduced spacing and restraint of every
longitudinal bar and web reinforcement, improves the seismic performance by reducing
undesired damage and increasing the wall deformability.

In addition, the analytical work revealed that the demands in the compressive region are a
function of both the normal stresses, resulting from bending, and the shear stresses. The
combination of the two stress states results in larger minimum principal stresses; these stresses
are beyond that computed from a linear-strain analysis. As such, compressive damage can be
sustained by the web in the case of larger shear stress demands. To mitigate this, a new
expression for the confined length was developed; this length is a function of the normalized
shear stress demand and is being considered for adoption by ACI 318H, the subcommittee on
seismic design.
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