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Abstract 

Reinforced concrete structural walls are common in mid- to high-rise structures in high seismic 
regions, and are expected to have good strength and ductility characteristics if designed in 
accordance with ACI 318-14. However, experimental and analytical investigations of reinforced 
concrete structural walls and isolated boundary element prisms indicate that the existing design 
provisions may be insufficient to provide ductile, flexure-dominated response under cyclic 
loading. Walls designed with an ACI compliant boundary element length are susceptible to 
shear-compression failures below the maximum ACI allowable shear stress of 10Acv√fc'. Also of 
concern is the frequent use of thinner walls in modern design; as the wall’s cross-sectional aspect 
ratio increases, such brittle shear-compression failures occur at even smaller shear stress values. 
In regards to detailing, special boundary elements with intermediate cross-ties exhibit a minimal 
improvement in confinement compared to ordinary boundary elements. This response can be 
linked to inadequacies in multiple code design parameters, including: vertical spacing and area of 
confinement steel, horizontal spacing and type of restraint to longitudinal bars, and development 
length provided for transverse reinforcement. Recent in-field wall failures have prompted 
concerns related to the minimum code required vertical and horizontal web shear reinforcement, 
as well as the relative amount of vertical-to-horizontal web steel. This paper examines ACI 318-
14 special boundary element and web reinforcement provisions and provides design 
recommendations intended to improve wall performance as compared with current ACI 
requirements. 
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PATTERN OF LONGITUDINAL BAR RESTRAINT 

The experimental results of rectangular prism tests by Welt (2015) and Massone et al. (2014) 
indicated that restraining each longitudinal bar improved compressive response. Figure 5 shows 
the relationship of bar restraint to the response metrics of confined stress and strain. These plots 
include only specimens with adequate development and are subdivided into three categories: (i) 
all bars restrained and s < 3db, (ii) all bars restrained and s = 4db, and (iii) alternate bars restrained 
and s = 4db. All three categories of specimens were able to achieve a strain capacity at or in 
excess of 2%, a value much larger than the specimens with inadequate development or widely 
spaced cross-ties. Examination of test prisms with s = 4db indicated that specimens with alternate 
bar restraint exhibit lower stress and strain capacities than those with each bar restrained. Though 
the pattern of bar restraint does impact compressive response, it is less significant than the effects 
of boundary element detailing parameters of vertical spacing or development length. 

HORIZONTAL SPACING OF TRANSVERSE REINFORCEMENT 

Based on ACI 318-14, horizontal spacing of the confining reinforcement (hx) must be no more 
than 14 in. Figure 5 assesses this hx limit using the experimental data by scaling specimen 
spacing to a full-scale wall by a multiplier of 12 in. divided by the wall thickness (12-in./b). This 
conversion assumes a full-scale wall to be 12 in thick. While none of the specimens were 
detailed for the ACI limit of hx =14, specimens with reduced hx values exhibit an improved 
confinement capacity. There is an additional horizontal bar spacing limit in ACI318-14 that 
specifies the maximum distance between restrained longitudinal horizontal as 2b/3. Examination 
of Figure 5 indicates that this horizontal spacing (2b/3 corresponding to hx =8) is adequate as it 
results in a peak stress at or in excess of 1.5 times the unconfined stress and a strain capacity of 
at least 2.0%. 

(a) (b) 
Figure 5. Stress (fcc’/fc’) and Strain (εcu) Capacity vs. 

Pattern of Bar Restraint and Horizontal Spacing 
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IMPACT OF SHEAR STRESS AND WEB REINFORCEMENT ON DUCTILITY OF 
WALLS: ANALYTICAL INVESTIGATION 

Review of prior experimental and in-field performance of both planar and non-planar reinforced 
concrete wall configurations shows that, rather than the expected flexural mode dominated by 
tensile response, there are many occurrences where  compression failures are observed in the 
boundary element and/or web of walls. In order to more extensively examine the design 
parameters that impact the deformability of walls a computational parametric study was 
undertaken using the ATENA 3D software developed by Cervenka Consulting 
(http://www.cervenka.cz) which is a high-resolution, non-linear finite element analysis tool that 
employs three-dimensional elements and is specifically designed for simulating the response of 
reinforced concrete structures. The following sections of the paper describe the process 
conducted by Whitman (2015) in order to validate the ATENA 3D numerical modelling 
approach against existing experimental wall test results, followed by a discussion of the findings 
for a selection of design parameters investigated in the study including the impact of shear stress 
demand, cross-sectional aspect ratio, boundary element length, and web reinforcement ratios on 
wall deformation and ductility. 

VALIDATION OF NUMERICAL MODEL 

Whitman (2015) utilized eight (8) experimentally-tested slender planar reinforced concrete walls 
subjected to a quasi-static cyclic loading in order to calibrate the numerical model in ATENA 
3D. Each of the walls exhibited flexural-compression type failures; this was intentional as the 
objective of the remainder of the parametric study was to investigate walls with significant 
compressive damage. The eight walls represented a range of axial load and cross-sectional aspect 
ratios as well as shear stress demands. The calibration process focused on selection of concrete 
and steel material constitutive modelling parameters, percentage of longitudinal and confinement 
steel represented as smeared versus discrete reinforcing bars, and mesh discretization. The 
objective with the calibration was to accurately simulate the measured strength, stiffness, drift 
capacity, ductility, and failure mode of the walls.  

Subsequent to the calibration, Whitman (2015) was able to successfully simulate a set of 
nineteen (19) slender planar wall tests. Table 1 summarizes the statistics for the ratio of 
simulated-to- measured values for stiffness, maximum strength and displacement at onset of 
strength loss for these simulated wall specimens. Figure 6 shows simulated and measured load-
deformation response for select walls. In all cases, the drift corresponding to loss of lateral load 
carrying capacity was correctly simulated. 

Table 1. Statistics for Ratio of Simulated to Measured Response Quantities 

 Yield Stiffness Max. Strength Displacement  
Median  0.91 0.99 0.98 

Coefficient of Variation 0.29 0.05 0.06 
 

Using the validated finite element model, Whitman (2015) conducted a parametric study to 
investigate the impact of various design parameters on the response of planar flexure-controlled 
walls. Whitman found that for planar walls, drift capacity and failure mode depends on: (i) the 
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High minimum principal stresses are able to be contained within the boundary element, rather 

than the boundary element losing compressive strength and these demands transferring to the 

wall web.  In contrast, the wall shown in Figure 7b was subjected to a relatively high shear stress 

demand of 6.4√fc'Ag (with fc’ in psi) and fails due to compression-shear failure at the web (CS 

failure). The minimum principal stress contours in Figure 7b are distinct from those in Figure 7a 

and show significant variation with increasing drift demand. The higher shear stress demand on 

this wall results in more heavily-loaded, diagonal compression struts spanning from the tension 

region near the top of the wall to the compressive region at the base of the wall and results in a 

region of high compressive demands along the base of the wall.  There are high minimum 

principal stress values within and outside of the boundary region, which indicates that there is 

significant compressive demand on the wall web. A compression-shear failure initiates at the 

web-boundary element interface where concrete crushing is observed, this reduction in 

compressive capacity is apparent in the stress contours at the base of the wall in the boundary 

element as they progress from green in the Mbase/Mn = 1 image to yellow and finally red at 

failure.  

 

(a) Specimen R1 (Osterle et al. 1975): CSAR = 18.8, shear = 1.10fc’Acv with fc’ in psi 

 

(b) Specimen S6 (Vallenas et al. 1979): CSAR = 21.1, shear = 6.42fc’Acv with fc’ in psi 

Figure 7. Minimum principal stress contours for RC wall specimens with approximately the 

same CSAR and different shear stress demands 
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Figure 8 shows the impact of cross-sectional aspect ratio. The two simulated walls have 

approximately the same shear stress demand (~6fc’) but different cross-sectional aspect ratios; 

the wall in Figure 8a has CSAR = 8, while the wall in Figure 8b has CSAR = 21. For the low 

CSAR wall, high stresses are predominately contained within the boundary element and concrete 

degradation also occurs exclusively in this confined region; the high CSAR wall has high 

stresses extending outside of the boundary element into the unconfined wall web and exhibits 

concrete crushing which initiates at the web-boundary element interface. This results suggest that 

walls subject to relatively high shear stress demands fail in a more brittle manner if the 

corresponding CSAR ratio is high and the boundary element is not able to sustain the high 

compressive demands such that the wall web is also heavily stressed.  

 

(a) Specimen RW-A20-P10-S63 (Tran 2012): CSAR = 8.0, shear  = 6.10fc’Acv with fc’ in psi  

 

(b) Specimen S6 (Vallenas et al. 1979): CSAR = 21.1, shear  = 6.42fc’Acv with fc’ in psi  

Figure 8. Minimum principal stress contours for RC wall specimens with approximately the 

same shear stress and different CSARs 
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structural walls in both the vertical and horizontal directions is 0.0025, and has been since the 
introduction of seismic design provisions for walls in ACI318-71. Unassociated with specific 
seismic design provisions, the 0.0025 value first appeared in the 1910 NACU Standard as the 
minimum total reinforcement ratio required for a wall. The only notable exceptions that occur 
between 1910 and 1971 for the total reinforcement ratio are in 1920 (where no explicit minimum 
reinforcement ratio was provided for walls), as well as 1956 and 1963 (where vertical 
reinforcement ratio minimum was reduced to 0.0015, though the horizontal ratio remained 
0.0025).  This historic timeline shows that the minimum web reinforcement ratio values used 
today are rooted in pre-seismic requirements from over a hundred years ago. 

The shear design requirements have also evolved very little over time since the formal inclusion 
of seismic provisions in ACI 318-71. Originally shear capacity was calculated φVn = φ(Vc + Vs) 
where Vc = 2(√fc'bd) and Vs = (Av,hfyd/s2. This changed in ACI 318-83 when the code became 
more consistent with the current approach of calculating Vn = Acv(αc√fc' + ρv,hfy), where, hw/lw ≥ 
1.5  αc = 3.0, hw/lw ≥ 2.0  αc = 2.0, and varied linearly in between these values. The 
maximum shear limit on an individual wall has been Vn ≤ 10√fc'Acv since ACI 318-71.  Note that 
there were some changes in language or variable designations in these expressions, but the intent 
of these code provisions have not changed for the last 30-40 years. 

The impact of increasing the web reinforcement beyond the ACI minimum (beyond what is  
required to resist shear) has not been studied. In addition, significant earthquake damage is 
sustained by lightly reinforced concrete walls, leading to early web reinforcement fracture. 
However, there are limited existing experimental test data related to the response of slender walls 
with varying vertical and/or horizontal web reinforcement ratios. A parametric study was 
conducted using the modeling approach described above to study the impact of shear stress 
demand coupled with web reinforcement on the ductility of planar walls.  

The slender concrete walls in the parametric study were designed to explore the impact of 
varying levels of vertical and horizontal web reinforcement for different shear stress demand 
levels (4.5, 6.0, and 9.0√fc'Acv with in psi). The primary interest in the study is evaluating the 
potential deformation and ductility gains for walls with moderate-to-high shear stress demands 
when designed in excess of the minimum web reinforcement ratios: (i) ≥ 0.0025 for both vertical 
and horizontal steel, and (ii) Vu/Vn ≤ 0.75 for horizontal steel. The resulting vertical and 
horizontal reinforcement ratios in the parametric wall study range from 0.25% to approximately 
1.0%; the upper bound was set so that designs did not significantly exceed the 0.25% minimum.  

Each of the walls in the study were designed for two different boundary element length 
scenarios: the ACI 318-14 compliant length and a length approximately equal to the neutral axis 
depth, as was used by Whitman (2015) in the study described above. In all, 45 walls were 
designed. The resulting distribution of shear stress demands, shear demand-capacity ratios 
(Vu/Vn) and horizontal reinforcement ratio in the web (ρweb,h) as shown in Figure 12. All of these 
models had a boundary element length equal to the ACI 318-14 required length, the greater of 
(c/2, c-0.1lw). In addition, the confined length was increased to c for each of the models, as 
indicated in Figure 13. In all of the remaining figures, models with ACI-compliant boundary 
element lengths, lBE, will be indicated by a hollow marker and models with increased lBE values 
will be indicated with filled markers. Although other parameters were varied, these two 
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Figure 14. Impact of Shear Stress Demand on Drift Capacity and Displacement Ductility 
 

The data in Figure 15 indicates that for ACI compliant walls there is a strong negative 
correlation between shear demand-to-capacity, Vu/Vn, and deformation/ductility. This negative 
correlation is not as pronounced for “extended” boundary element walls.  These findings suggest 
that using a smaller Vu/Vn value (or, a more conservative shear design) has benefits in terms of 
deformation/ductility for walls.   

Figure 15. Impact of Shear Demand-Capacity Ratio on Drift Capacity  
and Displacement Ductility 
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DESIGN RECOMMENDATIONS 

Based on the research, the following design recommendations are made:  

1. The boundary element confinement pattern, horizontal spacing and restraint pattern 
should follow the provisions for high-axial-stress columns, specifically ACI 318-14 
Section 18.7.5.2, which requires every bar to be restrained, and a limit on hx of 8 in. It is 
of note that even at Mn, the axial stress in the boundary element will exceed 0.3fc

’ which 
is the axial stress limit which triggers ACI 318-14. 

2. The confined length should be increased with an increase in the shear stress demand as 
follows: lbe = c(Vu/(8(√f’cAg))) where c is the largest neutral axis depth calculated for the 
factored axial force and nominal moment strength consistent with δu and 4 ≥ Vu/(√f’cAg) 
≤ 8 which limits the boundary element length to values between 0.5c and c. 

3. For walls expected to achieve high ductility capacities, Vu/Vn should be limited to 0.5 

CONCLUDING REMARKS 

The research studies described herein were undertaken to study and modify current design 
recommendations to improve the seismic performance of special RC walls; seismic performance 
is defined by both the damage sustained by the wall and its displacement ductility capacity. The 
studies used advanced experimental and analytical research approaches to investigate the 
parameters that were deemed to be most influential, specifically boundary element detailing, 
shear stress demand and web reinforcement. The results were compelling indicators that 
improving the boundary element detailing, by means of reduced spacing and restraint of every 
longitudinal bar and web reinforcement, improves the seismic performance by reducing 
undesired damage and increasing the wall deformability. 

In addition, the analytical work revealed that the demands in the compressive region are a 
function of both the normal stresses, resulting from bending, and the shear stresses. The 
combination of the two stress states results in larger minimum principal stresses; these stresses 
are beyond that computed from a linear-strain analysis. As such, compressive damage can be 
sustained by the web in the case of larger shear stress demands. To mitigate this, a new 
expression for the confined length was developed; this length is a function of the normalized 
shear stress demand and is being considered for adoption by ACI 318H, the subcommittee on 
seismic design.  
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