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Nonlinear fibre element modelling of RC bridge piers considering inelastic 

buckling of reinforcement 

Mohammad M Kashani1, Laura N. Lowes2, Adam J Crewe3, Nicholas A. Alexander4 

Abstract 

An advanced modelling technique is developed to model the nonlinear cyclic response of 

circular RC columns using fibre-based section discretisation method. A comparison between 

different reinforcing steel models is made. Through a comprehensive parametric study the 

influence of inelastic buckling of vertical reinforcement on the cyclic response of circular RC 

columns is investigated. The results have been compared and validated against a set of 

experimental datasets. The proposed calibrated model accounts for the influence of inelastic 

buckling of vertical reinforcement and interaction of stiffness of horizontal ties reinforcement 

with vertical reinforcement. The model also accounts for the fracture of vertical bars due to 

low-cycle high-amplitude fatigue degradation. Therefore, this model is able to predict the 

nonlinear cyclic response of circular RC columns up to complete collapse. The results show 

that the existing uniaxial material models of reinforcing bars that are calibrated using stress-

strain behaviour of isolated bars cannot represent the behaviour of reinforcing bars inside RC 

columns. Moreover, it is found that the buckling length of vertical reinforcement has a 

significant influence on the pinching response of RC columns and also reduces the low-cycle 

fatigue life of buckled reinforcement.  

Keywords: Nonlinear analysis, Finite element method, Reinforcing steel, Buckling, Force-

based element, Postbuckling, Reinforced concrete, Bridge piers, Low-cycle fatigue, Cyclic 

degradation  

1. Introduction  

Modern bridge design practice has improved the seismic response of bridges under earthquake 

loading when compare to the older bridges. Nevertheless the earthquake damage is expected 

and has been observed in the recent large earthquakes. Even bridges which suffer minor 
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damage after the earthquake require post-earthquake repair and result in a significant cost to 

bridge owners. To this end, it is very important for bridge owners and managers to be able to 

predict the earthquake damage on their bridges. This will help to improve the whole life cycle 

cost (WLCC) analysis of bridges.  The existing performance-based earthquake engineering 

(PBEE) relates the economic impact to the structural damage for a given hazard level. 

Therefore, it requires response models to predict the seismic demand of reinforced concrete 

(RC) bridges under multiple hazard levels, and damage models to predict the corresponding 

damage state. Finally PBEE framework links the column demands with damage state to 

estimate the economic loss. Accordingly, several researchers have studied the trends between 

the demand parameters (e.g. drift ratio or strain at critical sections) and damage parameters 

(e.g. bar buckling) experimentally [1-3].  

Moreover, recent advances in computational tools have enabled researchers to use refined 

modelling techniques in the analyses. This has improved the modelling nonlinear behaviour of 

structures and bridges subject to earthquake loading. The fibre-based finite element technique 

[4-6], is the most recent and popular method for nonlinear analysis of framed structures. In this 

method element cross section is discretised into a number of fibres at the selected locations 

along the length of element known as “integration points”. The behaviour of each fibre is 

modelled by a uniaxial nonlinear material model. Reinforcing steel, unconfined cover concrete 

and core confined concrete are treated as separate material models at section level. Therefore, 

the component response is primarily controlled by inelastic response of the cross section. 

Accordingly, several researchers have developed uniaxial material models to be used in fibre-

based finite element models.   

As it is well known to researchers, buckling of vertical reinforcement in RC columns is the 

most common type of observed failure mechanism [1-3]. Despite the significant efforts in the 

past two decades or so in development of buckling models for reinforcing bars and simulation 

of buckling of reinforcing bars in RC columns [7-25], there is still not a precise model that has 

been extensively validated against experimental datasets. To this end, there are two major 

concerns about the existing models: i) all of the existing models are calibrated based on either 

experimental and/or numerical stress-strain behaviour of isolated bars that may or may not 

represent the actual behaviour of embedded reinforcing bars inside concrete, ii) the stress-strain 

behaviour of reinforcing bars is averaged over the buckling length. Therefore, consideration 

needs to be given to the element mesh size that will affect the integration scheme of fibre 

model. Ignoring this phenomenon will result in strain localisation at the critical section [26,27].    
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Kashani [28,29] developed a new phenomenological uniaxial material model that accounts for 

the effect of inelastic buckling, low-cycle fatigue degradation and long-term corrosion damage 

on hysteretic behaviour of isolated reinforcing bars. This model has been implemented to the 

OpenSees [30] (an open source finite element computer code) as a new uniaxial material class, 

called CorrodedReinforcingSteel material model. If the percentage mass loss (measure of 

corrosion damage) in the material input parameters is taken as zero the model represents stress-

strain behaviour of the uncorroded reinforcement.  

This paper presents a comparison between the new CorrodedReinforcingSteel and the existing 

Steel02 available in the OpenSees. The discussion of Steel02 and other uniaxial material 

models used in the analyses is available in section 5 of this paper. Moreover, the material 

parameters of CorrodedReinforcingSteel have been calibrated for circular RC column through 

a comprehensive parametric study. The objectives of this paper are: 

i) to calibrate material parameters of the CorrodedReinforcingSteel model for circular 

RC columns to account for the interaction of tie reinforcement and vertical 

reinforcement. 

ii) to predict the impact of bar buckling on cyclic degradation, strength loss and failure 

mode of flexural govern RC columns.   

iii)  to develop an advanced computational modelling technique for simulation of bar 

buckling in RC columns. 

2. Experimental RC bridge column dataset 

The University of Washington-Pacific Earthquake Engineering Research Centre (UW-PEER), 

experimental test database [31] is an important repository of the nonlinear performance of the 

RC columns. This data set enables the calibration of the numerical model parameters. The 

database documents columns geometry, material properties, and reinforcement details. It also 

includes the force-displacement histories, and the observed drift at the onset of different 

damage states. For this study ten of the buckling critical column experiments are considered 

for model validation and calibration. Table 1 summarises the details of the selected columns 

and their references. In Table 1, L is the column length, L/D ratio is column length to column 

diameter ratio, ρl is the ratio of longitudinal reinforcement area to total cross sectional area, ρh 

is the volumetric ratio of horizontal reinforcement and P / (Ag fc) is the axial force ratio, where 

P is the axial force on the column, Ag is the gross cross section area of column and fc is the 
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compressive strength of concrete. The details of material properties can be found in either UW-

PEER column data base or in the relevant reference that is shown in Table 1.  

       

      Table 1 details of column dataset 

ID Reference L (mm) L/D ρl (%) 
ρh 

(%) 
Axial Force 

ratio, P/(Ag fc) 

(1)  Kunnath et al. A2  [32] 1372 4.5 2.04 0.01 0.09 

(2)  Lehman and Moehle 415 [33] 2438.4 4 1.49 0.01 0.07 

(3) Lehman and Moehle 815 [33] 4876.8 8 1.49 0.01 0.07 

(4)  Lehman and Moehle 1015 [33] 6096 10 1.49 0.01 0.07 

(5)  Lehman and Moehle 407 [33] 2438.4 4 0.75 0.01 0.07 

(6)  Lehman and Moehle 430 [33] 2438.4 4 2.98 0.01 0.07 

(7)  Henry 415p [33] 2438.4 4 1.49 0.01 0.12 

(8)  Henry 415s [33] 2438.4 4 1.49 0.00 0.06 

(9)  Moyer and Kowalsky 1[34] 2438.4 5.33 2.08 0.01 0.04 

(10)  Hamilton UCI1 [35] 1854.2 4.6 1.17 0.01 0.00 

Mean 2882.9 5.24 1.65 0.01 0.07 

Standard Deviation 1372.1 1.97 0.57 0.00 0.03 

Max 6096.0 10.00 2.98 0.01 0.12 

Min 1372.0 4.00 0.75 0.00 0.00 

 

3. Finite element model of RC bridge piers using nonlinear fibre beam-column element 

There are two methods of element formulation to formulate distributed plasticity frame models 

such as displacement-based and force-based formulations [4]. In the displacement-based 

formulation, the displacement vector fields along the element are expressed as functions of the 

nodal displacements. The assumed displacement fields are approximations of the actual 

displacement fields, and therefore several elements per member are required to obtain a good 

approximation of the exact response. In the force-based formulation, the internal force fields 

are expressed as functions of the nodal forces [4-6].  

A fibre beam-column element is a line element in which the moment-curvature response at 

selected locations (along the element known as integration points) is determined from the fibre 

section assigned to that integration point. Currently, forced-based (also known as flexibility-

based) fibre element is the most advanced one dimensional element for nonlinear analysis of 

RC components. In flexibility-based elements the curvatures at each integration point are 

estimated for the given moment at that section. Finally, the element response is obtained 

through weighted integration of the sections response [4]. In RC beams and columns usually 

inelastic behaviour occurs near the end of the component (plastic hinge region). Therefore, the 
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Gauss-Lobatto integration scheme, in which the integration points are placed at the ends of the 

element, as well as along the column length, is recommended [36]. 

Force-based elements are well suited for nonlinear analysis of framed structures because they 

allow the spreading of plasticity over the length of the member using only one element that has 

multiple integration points. However, it is well known that forced-based elements can lose their 

objectivity at a local and/or global level depending on section hardening/softening behaviour 

[26,27]. [26] proposed a simple material regularisation technique to solve this problem. The 

proposed material regularisation technique is based on the observed failure mode of concrete 

cylinders in compression tests. In compression tests the damage is a localised phenomenon, 

and there is experimental evidence that the energy dissipated by concrete crushing in 

compression a failure (dissipated energy) is constant and independent of the length of the 

specimen [37,38]. [27] successfully employed this method to predict the nonlinear cyclic 

response of RC shear walls using force-based fibre beam-column elements. Using this concept 

the constitutive material model must be modified based on the integration length for the critical 

section to avoid this localisation problem. In RC columns where the failure mode is buckling 

of vertical reinforcement, softening response of the critical section is controlled by the post-

buckling softening response of uniaxial material model of reinforcing steel. Therefore, the post-

buckling response of reinforcing steel has significant impact on strain localisation at the critical 

section.  

In this research, a different method is employed to avoid the strain localisation due to the post-

buckling response of reinforcing bars. It is known that the uniaxial material model including 

the post-buckling response of reinforcing bars is averaged over a known buckling length. Given 

it is expected that the buckling will occur at the first critical section of the column, the 

integration length of this section should be considered to be equal to the buckling length.  

The Gauss-Lobatto integration scheme doesn’t allow adjusting the length of the first integration 

point to be equal to the buckling length using one force-based element for the entire column. 

Therefore, in this research two force-based elements are used to model the RC column. It 

should be noted that this is different from the conventional lumped plasticity/plastic hinge 

method. Although the length of the first integration point is set to be equal to buckling length, 

the plasticity is not limited to this location. In the lumped plasticity method, a plastic hinge 

length must be known. Therefore, the plasticity is forced to occur at this location. It should also 

be noted that the buckling length is different from plastic hinge length. Therefore, in the 
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proposed method in this paper, there is no need for choosing any plastic hinge in advance. It is 

a generic method and is valid for any case.    

The proposed method employs three integration points (using Gauss-Lobatto integration 

scheme) for the first element. Based on the recommendation provided by [26, 27], the total 

length of 6 Leff where Leff is the buckling length (Leff is defined in the section 4 of this paper) is 

considered for this element. This makes the length of the first integration point to be equal to 

Leff. Using this method the length of the first element at the bottom of the column is adjusted 

based on the buckling length for each column. Based on the recommendations reported by [36] 

a forced-based element with five integration points is considered for the second element to 

model the top part of the column. A schematic view of the fibre model and fibre sections is 

shown in Fig. 1 below. The numbers of fibres and the section and discretisation method are 

based on the recommendations reported by [36]. To model the strain penetration and the 

slippage of reinforcement anchored to the foundation a zero length section element available 

in the OpenSees is used. The detailed discussion of the zero length section is available in 

section 5.4. 
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(a) 

 

 

                                                                                       (b) 

Fig. 1 Implementation of fibre beam-column element with bar buckling and bar slip model  

 

A displacement control with an adaptive solution algorithm code is developed using the Tcl 

code in the OpenSees to run the nonlinear analysis. To check the solution convergence, the 

norm of displacement increment is check against a defined tolerance. This command is 

implemented in the OpenSees to construct a convergence test which uses the norm of the left 

hand side solution vector of the matrix equation to determine if convergence has been reached. 

The tolerance considered is 10-8 over the maximum of 35 iterations. The analysis starts with 

Newton-Raphson solution algorithm. If the convergence is not achieved the displacement 

increment is cut by a factor of 0.1.If the convergence is not achieved again the displacement 

increment is cut by another factor of 0.1. Finally if the convergence is not achieved by cutting 

the step sizes twice, then the solution algorithm is changed. The solution algorithms used in 

the adaptive solution strategy in this study includes Newton-Raphson, modified Newton-

Raphson, Newton-Raphson with Line Search and Krylov-Newton algorithms. Further details 

of algorithm commands are available in [30]. 

4. Calculation of buckling length of the vertical reinforcement in circular columns 

Pantazopolou [7] studied a database of column tests to identify the parameters that influence 

bar buckling. They concluded that the interaction between horizontal tie stiffness and spacing 

and bar diameter of the reinforcement influences the instability of the vertical reinforcement in 

columns. Based on this study, Pantazopolou [7] derived an empirical equation to calculate the 

buckling length of reinforcement as a function of tie stiffness. 

Dhakal and Maekawa [16] studied the buckling behaviour of vertical reinforcement in 

rectangular columns. Using energy method, they derived the buckling mode shape accounting 

for the influence of tie stiffness on buckling length. This model was used in finite element 



 

8 
 

analysis of a cantilever column that was subjected to lateral and axial loads. The results of this 

model agreed fairly well with experimental results. However, Dhakal-Maekawa model has not 

been validated for circular columns. In this paper, the proposed Dhakal-Maekawa model has 

been used to calculate the buckling length of the experimental dataset presented in Table 1 and 

the result of analyses are compared with the observed experimental results. 

The proposed Dhakal-Maekawa model is shown in Fig. 2. The vertical reinforcing bar is 

considered as a beam fixed at both ends of the buckling length to emulate the restraining 

mechanism of horizontal ties. A cosine shape function satisfying the fixed boundary condition 

is then employed to define the deformed configuration of the buckled bar.  

 

Fig. 2 Dhakal-Maekawa bar buckling model 

Given the buckling of reinforcing bars is an inelastic buckling phenomenon, the elastic flexural 

rigidity EsI cannot be used here [40]. Dhakal-Maekawa suggested an average flexural rigidity 

EI, defined in Eq. (1), which has been validated against an extensive set of experimental data. 
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Where, Es and σy are the elastic modules and yield strength of the vertical reinforcement in 

MPa respectively. 

In this study the stiffness of horizontal ties (spiral reinforcement in circular columns) is 

computed using the empirical Eq. (2) suggested by Pantazopolou [7]. 
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Where, Esp is the elastic modulus of spiral reinforcement, Asp is the cross section area of spiral 

reinforcement, s is the spiral pitch and dc is the core diameter. 

In the buckling model, the horizontal ties are simulated by discrete elastic springs. Based on 

the experimental observation it is evident that the lateral ties show elasto-plastic behaviour and 

their tangent stiffness is almost zero after yielding. Therefore, the stiffness of horizontal ties in 

the middle is considered to be zero.  

Using energy method, Dhakal-Maekawa proposed an iterative procedure to calculate the 

required stiffness to sustain buckling mode nth. Solving the Eq. (3) and Eq. (4) simultaneously 

yields the required spring stiffness kn and the corresponding load Pn.  

0
2

2
cos1

4

2 22

1
33

4







 

 ns

P

n

iKc

sn

EI n
n

i

ni 
             (3) 

    0
121

2
cos1

41

2 221

1
33

4















 


 sn

P

n

iKc

sn

EI n
n

i

ni 
          (4) 

where, EI is the averaged flexural stiffness (Eq. (1)), s is the horizontal tie spacing and n is the 

buckling mode. The details and derivation of the equations are available in [16]. A flowchart 

of the iteration procedure is shown in Fig. 3 below. 

 

Fig. 3 iterative procedure of buckling length calculation [16] 

 

4.1. Comparison of the computed buckling mode with observed experimental results 

Using the procedure outlined in Section 4 the buckling lengths of the vertical reinforcement in 

the experimental dataset presented in Table 1 is computed and verified. The comparison of the 

computed and observed experimental results is summarised in Table 2.  

Calculate the actual 
tie stiffness Kt using 

Eq. (2) 

Buckling mode 
n = 1 

Kt > Kn 

Calculate required 
stiffness Kn using 
Eq. (3) and Eq. (4) 

Buckling length 
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 n
 +
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     Table 2 Comparison of the computed buckling mode with experimental dataset 

ID* 
Bar 

diameter 
d (mm) 

Yield 
strength 

σy 
(MPa) 

Normalised 
flexural 
rigidity  
EI / EsI 

Spiral 
pitch 

s 
(mm) 

Spiral 
diameter 
ds (mm2) 

Buckling 
mode 

computed 

Buckling 
mode 

observed 
s/d Leff/d 

1 9.5 448.00 0.529 19 4 4 4 2 8 
2 15.875 461.97 0.537 31.75 6.4 5 6 2 10 
3 15.875 461.97 0.537 31.75 6.4 5 6 2 10 
4 15.875 461.97 0.537 31.75 6.4 5 6 2 10 
5 15.875 461.97 0.537 31.75 6.4 5 5 2 10 
6 15.875 461.97 0.537 31.75 6.4 5 6 2 10 
7 15.875 462.00 0.537 31.75 6.4 5 5 2 10 
8 15.875 462.00 0.537 63.5 6.4 2 2 4 8 
9 19.05 565.37 0.594 76.2 9.5 1 1 4 4 
10 12.7 458.50 0.535 31.75 4.5 4 NA 2.5 10 

      * The ID number is the number allocated to the each experiment in Table 1 

Based on this comparison, it is evident that Dhakal-Maekawa buckling model is in good 

agreement with the experimental results. Therefore the computed buckling length is used in the 

analyses throughout this paper. 

5. Description of uniaxial material models  

5.1. Concrete model 

In this study the uniaxial material Concrete04 available in the OpenSees is used in the analyses. 

This model is using Popovics curve [41] in the compression and a linear-exponential decay 

curve in tension. For unloading and reloading in compression, the Karsan-Jirsa model [42] is 

used to account for stiffness degradation and determine the unloading/reloading stiffness. The 

secant stiffness is used to define the unloading/reloading stiffness in tension. Concrete04 is 

employed to model the unconfined concrete behaviour in cover concrete and a confined 

concrete in core concrete. The confined concrete is modelled using the confinement parameters 

developed by Mander et al. [43]. Fig. 4(a) shows the confined and unconfined concrete models 

with unloading-reloading cycling rules. Fig. 4(b) shows the concrete model in tension with 

unloading-reloading cycling rules. It should be noted that in Fig. 4, the σc is the maximum 

concrete compressive strength, εc0 is the strain at maximum compressive strength (σc) and εct is 

the strain at concrete fracture in tension.  
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                                             (a) (b) 

Fig. 4 Cyclic response of concrete model employed in the analyses: (a) unconfined and confined concrete 
response in compression including cyclic response (b) tension response  

5.2. Reinforcing steel model 

5.2.1. Uniaxial reinforcing steel material model without buckling 

The cyclic response of this reinforcing steel material model is defined by the Giuffre-

Menegotto-Pinto (GMP) equations [44] which have been modified by Fllipou [45]. This model 

is available in the OpenSees known as Steel02 uniaxial material model. The Steel02 accounts 

for the Bauschinger effect [46], but does not account for cyclic strength and stiffness 

degradation due to bar buckling and fatigue. The only required parameters to define the Steel02 

are yield strength, elastic modulus and hardening ratio of the reinforcing steel. The cyclic 

response of Steel02 is shown in Fig. 5. This model is used for the initial analyses as benchmark 

for comparison of the influence of cyclic degradation on inelastic response prediction models. 

 

   Fig. 5 Cyclic response of Steel02 material model  

5.2.2. Uniaxial reinforcing steel material model including inelastic buckling 

Khashani [28] developed an advanced phenomenological uniaxial material model for 

reinforcing bars. The model is calibrated using experimental modelling of uncorroded and 
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corroded isolated reinforcing bars [19,20,28,29]. The post-buckling envelope of this model is 

a function of a compound non-dimensional slenderness ratio λp (Eq. (5)) which was originally 

proposed by Dhakal-Maekawa [17].  

100
y eff

p

L

d


                                             (5) 

where, Leff is the calculated buckling length, d is the diameter of reinforcing bar and σy is the 

yield strength.   

The influence of inelastic buckling on stiffness degradation and pinching response of 

reinforcing bars in compression and low-cycle fatigue degradation in tension is considered in 

the model. The unloading stiffness degradation in tension is also considered in the model using 

the model proposed by Dodd and Restrepo-Posada [47]. This model is implemented to the 

OpenSees as a new material class called CorrodedReinforcingSteel. The detailed description 

of this model is available in [28,29]. This model works for both corroded and uncorroded steel. 

An example cyclic response of this model for a reinforcing bar with Leff/d = 10 and zero 

corrosion is shown in Fig. 6.  

 

   Fig. 6 Cyclic response of CorrodedReinforcingSteel material model without corrosion  

5.2.3. Uniaxial reinforcing steel material model using Hysteretic model in the OpenSees 

In this section the tension and compression envelope of the Hysteretic available in the 

OpenSees is fitted to CorrodedReinforcingSteel model and used in parametric study. This is 

because, it is very difficult to change the cyclic rules and pinching parameters of the 

CorrodedReinforcingSteel model by changing the implemented C++ code in the OpenSees in 

parametric study. Therefore, to find the optimum pinch parameters the Hysteretic model is used 

in the parametric study. 
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The uniaxial Hysteretic material model in the OpenSees is a generic hysteric model that can be 

used to model stress-strain behaviour of a material or force-displacement behaviour of a 

structural component. The backbone curves in tension and compression can be defined by three 

points. The cyclic response is defined by two pinch parameters that need to be calibrated for 

the proposed material or structural component. In this research the Hysteretic model is used in 

parametric study to calibrate the buckling parameters of the new Kashani’s buckling model 

(CorrodedReinforcingSteel) [28,29].  

The post-buckling envelope of CorrodedReinforcingSteel is very similar to Dhakal-Maekawa 

buckling model [17]. The only difference is that Dhakal-Maekawa model defines the post-

buckling response with a three point trilinear curve and CorrodedReinforcingSteel defines the 

post-buckling response using a smooth exponential function. The main differences between the 

two models are the cyclic rules including pinching effect, fatigue degradation and corrosion 

effect.  

Fig. 7(a) shows a comparison between the buckling envelope of the adopted Hysteretic material 

model and the CorrodedReinforcingSteel material model and Fig 7(b) shows an example of the 

cyclic response of the Hysteretic material model. Further details and the influence of pinching 

parameters on the cyclic rules of Hysteretic model are discussed in the parametric study section. 

         

                                            (a) (b) 

   Fig. 7 Cyclic response of Hysteretic material model: (a) buckling envelope (b) cyclic response 

5.3. Low-cycle fatigue degradation model 

OpenSees has a generic fatigue material model that can be wrapped to any steel model without 

changing the stress-strain state of the parent material. This material model accounts for the 

effect of low-cycle fatigue and is known as uniaxial Fatigue material model in the OpenSees. 

The model employs a modified rain-flow cycle counter to track strain amplitudes [48]. The 



 

14 
 

cycle counter is used in conjunction with Coffin-Manson relationship (Eq. (6)) and Miner’s 

Rule to describe the low-cycle fatigue failure [49,50].  

    ffp N2                                                                   (6) 

where, εp is the plastic strain amplitude (εp = εa – εe where, εa is the total strain amplitude and 

εe is the elastic strain), 2Nf  is the number of half-cycles to failure and α and εf  are material 

constants [51,52].  

The material constants α and εf are the input parameters in the Fatigue model. By wrapping 

this model to any steel model, once the Fatigue material reaches a damage state of 1.0, the 

stress of the parent material becomes zero. An example graph of the Fatigue material model 

wrapped to Steel02 is shown in Fig. 8.  

 

Fig. 8 Fatigue material model to predicting the fracture of reinforcement due to low-cycle fatigue. 

 

5.4. Bond-slip displacement model for zero length element 

5.4.1. Tensile stress-slip model for reinforcing steel 

In seismic design of RC bridge piers, plastic hinges are designed to form at the column ends 

(column to foundation/capping beam connection). This will result in slippage of longitudinal 

bars due to the substantial strain penetration along the bars into the foundation. This 

phenomenon has been observed by several researchers who studied the cyclic behaviour of RC 

columns experimentally [33]. Lowes and Altoontash [53] developed a bar-slip model for the 

end slip of longitudinal reinforcement in beam-column joints as shown in Fig. 9. Using the 

model in Fig. 9 the bar stress-slip relationship can be calculated using the Eqs. (7) to (11).  
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where, σs is bar stress at the column-foundation perimeter; σy is yield strength of reinforcing 

bar; E is steel elastic modulus; Eh is steel hardening modulus assuming a bilinear stress–strain 

response; τe is bond strength for elastic steel; τy is bond strength for yielded steel; Ab is nominal 

bar cross section area; and db is nominal bar diameter and le and ly, are the lengths along the 

reinforcing bar for which steel stress is less than and greater than the yield stress respectively. 

 

Fig. 9 Bar slip model [52] 

Berry and Eberhard [36] conducted a comprehensive parametric study and provide 

recommendations for the values of bond strength to be used in modelling RC columns. The 
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suggested values of average bond strengths are summarised in Table 3. The suggested value of 

steel hardening ratio (Eh/E) is suggested to be taken as 0.1. 

                                   Table 3 Average bond strength as a function of steel stress state  

 

                          * σc is the compressive strength of concrete 

The material parameters of the Steel02 are modified using the Eqs. (5) to (9) and used to model 

the bar stress-slip behaviourFig. 10 shows the normalised cyclic bar stress-slip response of the 

model that is used in this study. The Sy in Fig. 10 is the slip at onset of yielding of reinforcement. 

 

Fig. 10 Bar stress-slip model used in zero length section 

 

5.4.2. Compressive stress-slip model for concrete 

The slippage of longitudinal bars in tension combined with the compression due to flexure and 

axial force results in a highly localised compressive stress in concrete in compression zone. 

This will cause a localised damage in confined concrete over a so-called dcomp depth [36] as 

shown in Fig. 11. 

         Bars stress Average bond strength (σc
* in MPa) 

σs ≤ σy 0.9 c  

σs > σy 0.45 c  
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Fig. 11 Assumed compressive depth [36] 

[36] recommended the value of decomp to be 0.5c where c is the depth of neutral axis. In this 

study dcomp = 0.3D is used in the analyses where D is the column diameter. 

The uniaxial material Concrete01 available in the OpenSees (concrete model with zero tension) 

is used to model the concrete in zero length section. The Concrete04 has more parameters 

including tension branch. Changing these parameter and setting the tension branch of the 

Concrete04 to zero resulted in numerical instability. Therefore, a simpler model is used in the 

zero length section element. The stress-strain behaviour of this model is modified by 

multiplying the strain by dcomp. It should be noted that the whole zero length section was 

considered to be confined concrete. The confinement parameters are the same parameters as 

the concrete model used in the column. However, given the zero length section element is 

extremely confined in the foundation it was assumed that the post-peak branch of the concrete 

model deteriorates up to 80% of the maximum compressive strength of the confined concrete 

and then follows a perfectly plastic plateau [54]. The stress-slip model of confined concrete 

model used in zero length section is shown in Fig. 12.  

 

Fig. 12 concrete stress-slip model used in zero length section 

dcomp 

Loading direction 
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6. Initial analysis and comparison of the Steel02 and the new CorrodedReinforcingSteel 

material models before calibration 

The main objective of this research is to investigate the influence of buckling and low-cycle 

fatigue degradation of vertical reinforcement on the nonlinear cyclic response of RC columns. 

Therefore, the material models for concrete and zero length element are kept unchanged 

throughout the analyses based on the recommendations suggested by [36].  

To validate the basic model, the computed responses of the proposed fibre model using Steel02 

material model are compared with the experimental results (Fig. 13). 

         

                                            (a) (b) 

                 

                                            (c) (d) 

Fig. 13 Examples of computed force-displacement responses of the RC columns using Steel02 material 
model 

The computed responses in Fig. 13 are identical to those computed by [36]. The Steel02 can 

predict the cyclic response of columns accurately until the point that strength degradation starts. 

This is due to the effect of inelastic buckling and low-cycle fatigue degradation of vertical 

reinforcement. The effect of strength degradation is less significant in columns that the 

effective buckling length of vertical reinforcement is relatively small (e.g. Fig. 13 (c) with Leff 

/ d = 4).  
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In the second run, the Steel02 model is replaced with the new CorrodedReinforcingSteel that 

includes inelastic buckling and low-cycle fatigue degradation. The buckling lengths used in the 

model are the computed values using Dhakal-Maekawa methodology [16] (as summarised in 

Table 2). The fatigue parameters are taken based on the recommended values reported by [51]. 

It should be noted that both buckling and fatigue parameters are calibrated for isolated bars and 

the model is not calibrate for bars inside RC columns at this stage. Fig. 14 shows two examples 

of the computed responses using uncalibrated CorrodedReinforcingSteel considering no 

corrosion. 

         

                                            (a) (b) 

 Fig. 14 Examples of force-displacement responses using CorrodedReinforcingSteel model 

It is clear from the Fig. 14 that computed responses using the new CorrodedReinforcingSteel 

material model are significantly different from the observed experimental responses. As 

expected, the buckling model of reinforcing bars calibrated using stress-strain behaviour of 

isolated bars (bare bar) is not representing the real behaviour of reinforcing bars inside the 

concrete. Dhakal-Maekawa methodology can accurately predict the buckling length of vertical 

bars. However, for a given buckling length, the lateral deformation (after buckling) of an 

isolated bar is more than the same bar inside concrete. Therefore, when a material model based 

on the behaviour of isolated bars is used in the fibre model, it unrealistically increases the 

compression strain demand at the critical section. As a result, core confined concrete crushes 

very early, and so the whole model becomes unstable quickly. The comparison of the numerical 

and experimental shows that the stiffness of horizontal ties are not only affecting the buckling 

mode and length but also affecting the cyclic stress-strain behaviour of bars. In other words the 

interaction of horizontal tie reinforcement and vertical reinforcement under cyclic loading must 

be considered in the cyclic rules of the reinforcing steel.  



 

20 
 

The previous experimental and numerical studies on the nonlinear cyclic response of 

reinforcing bars showed that buckling results in a severe pinching effect in cyclic response of 

isolated reinforcing bars [20,28,29,55].  This effect is due to the influence of geometrical 

nonlinearity on stress-strain behaviour of isolated bars. However, when reinforcing bars are 

inside the concrete and restrained by horizontal ties, the cyclic response and strength 

degradation of bars are influenced by tie stiffness. Therefore, the pinching effect in cyclic 

response of reinforcing bars inside the concrete is not as severe as the isolated bars.  

Solving this problem is a very challenging task, because the CorrodedReinforcingSteel is 

modelling three phenomena in one uniaxial material models. These phenomena are due to 

material plasticity, geometrical nonlinearity caused by buckling and  low-cycle fatigue 

degradation. Accordingly, a parametric study is conducted to find an optimum uniaxial material 

model for vertical reinforcing bars that provides an accurate prediction of the cyclic response 

of RC columns considering the inelastic buckling of vertical bars. The procedure of the 

parametric study is discussed in section 7.  

7. Parametric study using Hysteretic material model   

7.1. Selection of pinching parameters 

The Hysteretic material model in the OpenSees has two pinching parameters (pinch x and pinch 

y). Pinch x is the pinching factor for strain, ranging from 0 to 1 and pinch y is the pinching 

factor for stress, ranging from 0 to 1. Using these parameters it is possible to control the 

pinching response of the material model. In the current parametric study, nine combinations 

which are representing three types of pinching responses are considered (Fig. 15). The pinching 

combinations used in the parametric study are summarised in Table 4.    

         
                                             (a) (b) 
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                                                                                           (c)  

Fig. 15 Cyclic responses of reinforcing bar using Hysteretic material model with Leff/d = 10 and different 
pinching parameters: (a) small pinch (b) moderate pinch (c) severe pinch 

                               Table 4 Pinch combination used in the parametric study 

Combination  1 2 3 4 5 6 7 8 9 
pinch x 0.2 0.2 0.2 0.4 0.4 0.4 0.7 0.7 0.7 
pinch y 0.8 0.6 0.4 0.8 0.6 0.4 0.8 0.6 0.4 

 

The error in hysteretic energy dissipation (Eq. (11)) is used as a measure of accuracy in the 

parametric study. 

meas comp

E
meas

E E

E


                                 (12) 

where, ΩE is the energy error, Emeas is the measured dissipated energy in experiment and Ecomp 

is the computed dissipated energy in fibre model.  

It should be noted that for calculation of the dissipated hysteretic energy only hysteretic cycles 

before severe strength loss in the cyclic response are considered. In this study, when the column 

strength falls below 80% of the maximum strength, it is considered as severe strength loss and 

is identified as the maximum drift capacity. It should be noted that the low-cycle fatigue is not 

considered in the parametric study. 

7.2. Comparison of the hysteretic energy dissipation 

Fig. 16 shows the ΩE of each column test experiment for all the pinching parameters. It is clear 

from Fig. 16 that the error in pinching combination number 1 to 4 and number 8 to 10 are quite 

big. However, the error in combination number 5 to 7 is normally below 10% for most columns.  

It was found that among these three combinations, the combination 6 has the smallest average 

error in predicted response. As mentioned earlier, the pinching response of the reinforcing bars 
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is affected by the spacing horizontal tie reinforcement (s/d). Moreover, the cyclic response of 

the RC columns is also affected by axial force ratio and ratio of vertical reinforcement (ρl). 

Therefore, the correlation between the pinch parameters (pinch x and pinch y) and ρl, s/d and 

axial force ratio is investigated. It was found that there is not any correlation between these 

parameters. This is because there is not enough variation in ρl, s/d and axial force ratio in the 

experimental dataset. Therefore combination 6 is taken as the optimum model for further 

analyses.  

 

Fig. 16 Error in hysteretic energy dissipation of each pinch combination for all the columns   

 

8. Discussion of computational results of the optimised model  

8.1. Discussion of results of buckling included model without the low-cycle fatigue 

Fig. 17 shows the qualitative comparison of the OpenSees model with optimised uniaxial 

material model (the Hysteretic model fitted to CorrodedReinforcingSteel model) of 

reinforcement with the effect of buckling and the experimental dataset.  

It is clear from the Fig. 17 that the predicted responses of the optimised model are in a very 

good agreement with observed experimental responses. For example consider the Fig. 17(a) 

and (b) which shows the Henry’s columns 415p and 415s. All the details of these two columns 

are identical apart from the s/d. The difference in s/d resulted in a change in buckling length. 

Therefore, the response of column 415p with Leff /d = 10 is more pinched compare to the 

response of column 415s with Leff /d = 8. This observation is consistent with the observed 

experimental response.  
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The buckling of vertical bars in columns results in strength loss in post-buckling branch of 

stress-strain response of reinforcement.  This strength loss in reinforcing steel increases the 

stress in core confined concrete. Moreover, the core expansion and the horizontal deformation 

of vertical bars due to buckling results in yielding and subsequently fractures of horizontal tie 

reinforcement. In these circular column the failure mode is found to be bar buckling and then 

followed by gradual core concrete crushing. This is due to the geometry of the column cross 

section and might be different in rectangular cross sections. As a result the core confined 

concrete crushes much sooner than a situation where buckling is not an issue or buckling length 

is short (Leff/d < 6). This mechanism causes a severe loss of strength that degrades during the 

cyclic loading of column. This can be clearly seen in Fig. 17. By comparing the computational 

responses using Steel02 and the optimised buckling model, it is apparent that the strength 

degradation cannot be captured using Steel02.  

It was observed that if vertical bars buckle over a short length the buckling of vertical bars 

doesn’t have a significant influence on cyclic response of the column. This has been shown 

previously in Fig. 13(c) (Moyer and Kowalsky’s column 1). Vertical reinforcement in this 

column buckled over one tie spacing, therefore Leff /d = s/d = 4. In this case, the numerical 

responses using Steel02 is in a very good agreement with the observed experimental response. 

This can be seen in Fig 16 where the error in the dissipate energy using Steel02 is very small 

and is very similar to Hysteretic model. [19,28,29,55] reported that for ordinary high yield 

reinforcing bars with yield strength ranging from 400MPa to 500MPa, if the Leff /d < 6, the 

postbuckling response in compression is almost identical to the tension envelope and buckling 

doesn’t significantly influence the cyclic stress-strain behaviour of reinforcement. Moreover, 

given the buckling length is very short, the horizontal deformation is smaller than bars with 

larger buckling lengths. Therefore, horizontal tie reinforcement are not quickly fractured 

following the buckling of vertical bars. As a result the column can sustain a much larger drift 

without crushing of core confined concrete in compression.   
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   (a)                                                                                 (b) 

 

                                                 (c)                                                                                (d) 

Fig. 17 Force-displacement responses for the experimental dataset using calibrated Hysteretic model 

In order to quantify the accuracy of the numerical model the error in predicting the response at 

critical stages are compared (Eq. (13)). The considered stages are the initial stiffness (Kinitial = 

Fy/Δy where the Fy is the force at first yield of reinforcement and Δy is the corresponding 

displacement), prediction of the 1% drift capacity (F1) and the prediction of the maximum drift 

capacity (Fmax). The Fmax is the force at the maximum drift, that column experienced in the 

physical test. Table 5 shows the results of this comparison including the statistics of the error 

data.  

exp

exp

eriment computed

eriment


 



                                          (13) 

Where, ηexperiment is the experimental value of the considered variable (Kinitial, F1 and Fmax) and 

ηcomputed is the computed predicted value of the considered variable (Kinitial, F1 and Fmax). 

               Table 5 Quantitative comparison of the error in the optimised model and experimental dataset 

Experiment ΨKinitial ΨF1 ΨFmax 
Kunnath et al. A2  [31] 0.236 0.175 0.083 

Lehman and Moehle 415 [32] 0.059 0.012 0.004 
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8.2. Discussion of results of buckling included model combined with low-cycle fatigue 

The observed experimental results show that some of the columns experienced bar fracture in 

tension shortly after buckling. The point at which bar fracture occurred during the cyclic test 

for each column is reported in the relevant references. In this research the Fatigue model in the 

OpenSees is wrapped to the optimised buckling model to model the fracture of bars due to low-

cycle fatigue. The fatigue material constants (α and εf) are set to predict the bar fracture at the 

same point as is observed in the experiment. Fig. 18 shows example of cyclic responses 

considering the fracture of reinforcing bars due to fatigue.     

         
                                            (a) (b) 

Lehman and Moehle 815 [32] 0.131 0.132 0.167 
Lehman and Moehle 1015 [32] 0.246 0.295 0.222 
Lehman and Moehle 407 [32] 0.018 0.011 0.029 
Lehman and Moehle 430 [32] 0.260 0.188 0.038 

Henry 415p [32] 0.404 0.169 0.000 
Henry 415s [32] 0.366 0.110 0.120 

Moyer and Kowalsky 1[33] 0.275 0.268 0.245 
Hamilton UCI1 [34] 0.238 0.045 0.127 

Mean Value 0.223 0.140 0.104 
Standard Deviation 0.117 0.094 0.084 

Max 0.404 0.295 0.245 
Min 0.018 0.011 0.000 
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                                            (c) (d) 

Fig. 18 Force-displacement responses for the experimental dataset using calibrated Hysteretic model 
combined with Fatigue model 

It was found that the fracture of bars in tension and fatigue material constants are sensitive to 

λp. All the Columns with λp < 18 didn’t experience bar fracture in tension. However, as λp 

increased the low-cycle fatigue life of bars reduced. This shows that the low-cycle fatigue life 

of reinforcing bars is a function of compound non-dimensional slenderness ratio λp. This can 

be shown by comparing Henry’s column 415p with λp = 21.49 and 415s with λp = 17.19. Fig. 

18(a) shows the response of Henry’s column 415p that experienced bar fracture in tension. 

However, bar fracture in tension was not observed in Henry’s column 415s as shown in Fig. 

17(b). This is in a good agreement with the experimental results reported by [56,57]. 

This shows that the combined effect of inelastic buckling and low-cycle fatigue degradation 

has a significant influence on inelastic response of RC columns. Fig. 19 shows a comparison 

between the normalised accumulated energy dissipation in two columns. It should be noted that 

the dissipated energy in Fig. 19 is normalised to the dissipated energy under elastic region of 

the monotonic pushover curve. Fig. 19(a) shows the Henry’s column 415p with λp = 21.49 and 

Fig. 19(b) shows Moyer and Kowalsky’s column 1 with λp = 9.5.  

         
Fig. 19 Influence of material model on accumulated energy dissipation: (a) Henry 415p and (b) Moyer 

and Kowalsky 1   
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Fig. 19(a) shows that as the number of cycles increase there is a cumulative error in the 

numerical model with Steel02. However, Fig. 19(b) shows that the predicted response using 

Steel02 and the optimised buckling model with fatigue is almost identical. This is another 

argument which suggests that the bar buckling parameter, λp, has a significant influence on the 

inelastic response of RC columns. This is an area for further research to develop a methodology 

to calibrate the fatigue material constants as a function of λp.    

For further validation of the calibrated model a set of cyclic analysis on Kunnath et al. [32] 

columns with random displacement history is conducted. These columns were not included in 

the calibration process. Fig. 20 shows the comparison of the simulated and experimental results 

of column A11. Fig. 20 (a) shows the simulated response using calibrated buckling model 

without considering fatigue and Fig. 20 (b) shows the simulated response using calibrated 

buckling model combined with fatigue model. It is evident from the Fig. 20 that the calibrated 

model is capable of predicting the inelastic response of RC columns under arbitrary random 

load history. Moreover, the model is able to account for cyclic degradation due to combined 

effect of buckling and low-cycle fatigue degradation of vertical reinforcement.  

 

         
                                            (a) (b) 

Fig. 20 Force-displacement responses for Kunnath et al column A11 under earthquake loading pattern: 

(a) calibrated buckling model without considering fatigue (b) calibrated buckling model with fatigue 

9. Conclusion 

A new modelling technique for nonlinear analysis of RC bridge piers considering the inelastic 

buckling and low-cycle fatigue of vertical reinforcing bars is developed. The numerical model 

is calibrated using UW-PEER experimental RC column dataset. The main conclusions and 

outcomes of this research can be summarised as below: 
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1. The localisation issue in force-based elements in structural systems with softening 

response due to buckling can be resolved by using two elements. As suggested the 

integration length of the first section of first element must be taken the same as the buckling 

length considered in the uniaxial material model of reinforcing steel. 

2. The methodology developed by [16] for calculation of buckling length showed a very good 

agreement with the observed experimental results of circular columns. Therefore, it can be 

used as a reliable model in calculation of the buckling length of reinforcing bars in RC 

columns accounting for the stiffness of horizontal tie reinforcement. 

3. It was found that the new uniaxial material model for reinforcing bars that developed and 

implemented in OpenSees by [28] cannot represent the cyclic behaviour of reinforcing 

bars inside concrete. This is because the model is calibrated using the experimental and 

numerical data of isolated bars and doesn’t account for the influence of horizontal tie 

reinforcement. Such an enhancement to the bar material model, that fully accounts for the 

influence of tie reinforcement, is an area for future research.   

4. The observed experimental and numerical results showed that fracture of bars due to low-

cycle fatigue is very sensitive to the compound non-dimensional slenderness ratio of bars 

(λp). This is an area for future research..   

5. The final calibrated model (Hysteretic material model) has identical backbone curves in 

tension and compression (buckling curve) to CorrodedReinfrocingSteel. This calibrated 

model has optimum pinch parameters (pinch x and pinch y) that were calibrated in the 

parametric study. The results  show a very good agreement in predicting the nonlinear 

cyclic response of circular RC columns using this optimised model. The model is also 

validated against column experiments with random displacement history which were not 

included in calibration process. Although there is need for further model calibration, 

nevertheless the modelling technique developed in this paper can be used in nonlinear 

seismic analysis and evaluation of RC bridges as a reliable tool for both researchers and 

practicing engineers. 
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