1,246 research outputs found

    Assessment of crystallographic influence on material properties of calcite brachiopods

    Get PDF
    Calcium carbonate biominerals are frequently analysed in materials science due to their abundance, diversity and unique material properties. Aragonite nacre is intensively studied, but less information is available about the material properties of biogenic calcite, despite its occurrence in a wide range of structures in different organisms. In particular, there is insufficient knowledge about how preferential crystallographic orientations influence these material properties. Here, we study the influence of crystallography on material properties in calcite semi-nacre and fibres of brachiopod shells using nano-indentation and electron backscatter diffraction (EBSD). The nano-indentation results show that calcite semi-nacre is a harder and stiffer (H {approx} 3–5 GPa; E = 50–85 GPa) biomineral structure than calcite fibres (H = 0.4–3 GPa; E = 30–60 GPa). The integration of EBSD to these studies has revealed a relationship between the crystallography and material properties at high spatial resolution for calcite semi-nacre. The presence of crystals with the c-axis perpendicular to the plane-of-view in longitudinal section increases hardness and stiffness. The present study determines how nano-indentation and EBSD can be combined to provide a detailed understanding of biomineral structures and their analysis for application in materials science

    Controlled biomineralization of magnetite (Fe<sub>3</sub>O<sub>4</sub>) by <i>Magnetospirillum gryphiswaldense</i>

    Get PDF
    Results from a study of the chemical composition and micro-structural characteristics of bacterial magnetosomes extracted from the magnetotactic bacterial strain Magnetospirillum gryphiswaldense are presented here. Using high-resolution transmission electron microscopy combined with selected-area electron diffraction and energy dispersive X-ray microanalysis, biogenic magnetite particles isolated from mature cultures were analysed for variations in crystallinity and particle size, as well as chain character and length. The analysed crystals showed a narrow size range (∼14-67 nm) with an average diameter of 46±6.8 nm, cuboctahedral morphologies and typical Gamma type crystal size distributions. The magnetite particles exhibited a high chemical purity (exclusively Fe3O4) and the majority fall within the single-magnetic-domain range

    Interview with Heinz A. Lowenstam

    Get PDF
    Interview conducted in eight sessions in the summer of 1988 with Heinz A. Lowenstam, professor of paleoecology. Dr. Lowenstam was born in Germany and educated at the universities of Frankfurt and Munich. He emigrated to the United States in 1937 to continue his graduate studies in geology and paleontology at the University of Chicago, receiving the PhD there in 1939. After a stint at the Illinois State Museum, he joined the Chicago faculty in 1948, working with Harold C. Urey on paleotemperatures. He joined Caltech's Geology Division in 1952 as a professor of paleoecology, pursuing research in a variety of fields. In 1962, he identified iron in chiton teeth, the first known instance of biomineralization, later found in such diverse creatures as bacteria, honeybees, and birds. In this interview, he recalls the difficulties he faced as a Jew in Nazi Germany, his graduate work in Palestine in the mid-1930s, his life as an émigré, his investigation of Silurian fossils in the Chicago area, and his interaction with such mentors and colleagues at Chicago as Urey, N. L. Bowen, Bailey Willis, Bryan Patterson, and Karl Schmidt. He discusses the evolution of the Geology Division at Caltech; its important move, under division chairman Robert P. Sharp, into geochemistry in the early 1950s; his work on the paleoecology of marine organisms; his recollections of Caltech colleagues, including Sam Epstein, Beno Gutenberg, Hugo Benioff, James Westphal, Max Delbruck, and George Rossman; and the changes that took place in the division over the decades since his arrival

    Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre

    Full text link
    Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400-nm thick aragonite crystalline tablets confined by organic matrix sheets, with the (001)(001) crystal axes of the aragonite tablets oriented to within ±\pm 12 degrees from the normal to the layer planes. Recent experiments demonstrate that this orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.Comment: 20 pages, 3 figure

    Field conference on Niagaran reefs in the Chicago region

    Get PDF
    Held in connection with the 35th Annual Convention of the American Association of Petroleum Geologists at Chicago, April 28, 1950

    First macrobiota biomineralisation was environmentally triggered

    Get PDF
    Why large and diverse skeletons first appeared ca 550 Ma is not well understood. Many Ediacaran skeletal biota show evidence of flexibility, and bear notably thin skeletal walls with simple, non-hierarchical microstructures of either aragonite or high-Mg calcite. We present evidence that the earliest skeletal macrobiota, found only in carbonate rocks, had close soft-bodied counterparts hosted in contemporary clastic rocks. This includes the calcareous discoidal fossil Suvorovella, similar to holdfasts of Ediacaran biota taxa previously known only as casts and moulds, as well as tubular and vase-shaped fossils. In sum, these probably represent taxa of diverse affinity including unicellular eukaryotes, total group cnidarians and problematica. Our findings support the assertion that the calcification was an independent and derived feature that appeared in diverse groups where an organic scaffold was the primitive character, which provided the framework for interactions between the extracellular matrix and mineral ions. We conclude that such skeletons may have been acquired with relative ease in the highly saturated, high alkalinity carbonate settings of the Ediacaran, where carbonate polymorph was further controlled by seawater chemistry. The trigger for Ediacaran biomineralization may have been either changing seawater Mg/Ca and/or increasing oxygen levels. By the Early Cambrian, however, biomineralization styles and the range of biominerals had significantly diversified, perhaps as an escalating defensive response to increasing predation pressure. Indeed skeletal hardparts had appeared in clastic settings by Cambrian Stage 1, suggesting independence from ambient seawater chemistry where genetic and molecular mechanisms controlled biomineralization and mineralogy had become evolutionarily constrained

    Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    Get PDF
    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 °C has been studied by microcalorimetry and several physical–chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatitic phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO4 2− ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coating

    Phosphonic Acid-Functionalized Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly: Synthesis, Characterization, and Occlusion into Calcite Crystals

    Get PDF
    Dialkylphosphonate-functionalized and phosphonic acid-functionalized macromolecular chain transfer agents (macro-CTAs) were utilized for the reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) at 20% w/w solids in methanol at 64 °C. Spherical, worm-like and vesicular nano-objects could all be generated through systematic variation of the mean degree of polymerization of the core-forming PBzMA block when using relatively short macro-CTAs. Construction of detailed phase diagrams is essential for the reproducible targeting of pure copolymer morphologies, where these were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). For nano-objects prepared using the phosphonic acid-based macro-CTA, transfer from methanol dispersion to water leads to the development of anionic surface charge as a result of ionization of the stabilizer chains, but this does not adversely affect the copolymer morphology. Given the well-known strong affinity of phosphonic acid for calcium ions, selected nano-objects were evaluated for their in-situ occlusion within growing CaCO3 crystals. Scanning electron microscopy (SEM) studies provide convincing evidence for the occlusion of both worm-like and vesicular phosphonic acid-based nano-objects and hence the production of a series of interesting new organic-inorganic nanocomposites
    corecore