18,108 research outputs found

    Evidence to the House of Lords select committee on science and technology: energy efficient buildings

    Get PDF

    A nanoradian differential VLBI tracking demonstration

    Get PDF
    The shift due to Jovian gravitational deflection in the apparent angular position of the radio source P 0201+113 was measured with very long baseline interferometry (VLBI) to demonstrate a differential angular tracking technique with nanoradian accuracy. The raypath of the radio source P 0201+113 passed within 1 mrad of Jupiter (approximately 10 Jovian radii) on 21 Mar. 1988. Its angular position was measured 10 times over 4 hours on that date, with a similar measurement set on 2 Apr. 1988, to track the differential angular gravitational deflection of the raypath. According to general relativity, the expected gravitational bend of the raypath averaged over the duration of the March experiment was approximately 1.45 nrad projected onto the two California-Australia baselines over which it was measured. Measurement accuracies on the order of 0.78 nrad were obtained for each of the ten differential measurements. The chi(exp 2) per degree of freedom of the data for the hypothesis of general relativity was 0.6, which suggests that the modeled dominant errors due to system noise and tropospheric fluctuations fully accounted for the scatter in the measured angular deflections. The chi(exp 2) per degree of freedom for the hypothesis of no gravitational deflection by Jupiter was 4.1, which rejects the no-deflection hypothesis with greater than 99.999 percent confidence. The system noise contributed about 0.34 nrad per combined-baseline differential measurement and tropospheric fluctuations contributed about 0.70 nrad. Unmodeled errors were assessed, which could potentially increase the 0.78 nrad error by about 8 percent. The above chi(exp 2) values, which result from the full accounting of errors, suggest that the nanoradian gravitational deflection signature was successfully tracked

    How to support growth with less energy

    Get PDF
    There is considerable potential to support growth with less use of primary energy and lower carbon emissions. This can be achieved through technical solutions (existing and new), as well as behavioural change. The goal of securing growth with lower carbon emissions is just one of several strategic goals that need to be satisfied. Of the others, the need to develop alternatives to an energy system heavily dependent on oil and natural gas and to maintain security of energy supply are likely to be the most important. The strategic goals are to achieve major reductions in the energy intensity of transport, buildings in use, and to achieve corresponding reductions in energy intensity of the major building materials. Key challenges associated with these strategic goals include: • the development of technologies to produce carbon-free cement, carbon-free steel, carbon-free glass • enabling infrastructural developments that provide a framework for a wide range of low-carbon technologies and increase energy diversity and security of supply • identification of key energy-efficiency tipping points and the construction of technology policy • development of methane-fired modular fuel cells • improved capabilities to model whole energy systems, i.e. adequately modelling both demand and supply, social/economic as well as technical, and assessing the impact outside of the UK system boundary • better low-carbon planning and improved co-ordination of planning, building control and other policy tools • better monitoring and feedback on the real performance of energy efficient technologies. The implication of the Energy White Paper goal of reducing CO2 emissions by 60% by 2050 is a six-fold reduction in the carbon intensity of the UK economy. In the longer run, it is clear that we will move towards a carbon-free economy. Within this transition, developments in supply, distribution and end-use technologies will be multiplicative, while action to constrain demand growth is crucial to the rate of the overall transition

    The Planckian Conspiracy: String Theory and the Black Hole Information Paradox

    Get PDF
    It has been argued that the consistency of quantum theory with black hole physics requires nonlocality not present in ordinary effective field theory. We examine the extent to which such nonlocal effects show up in the perturbative S-matrix of string theory.Comment: 13 pages, harvma

    Exploring Deep Space: Learning Personalized Ranking in a Semantic Space

    Full text link
    Recommender systems leverage both content and user interactions to generate recommendations that fit users' preferences. The recent surge of interest in deep learning presents new opportunities for exploiting these two sources of information. To recommend items we propose to first learn a user-independent high-dimensional semantic space in which items are positioned according to their substitutability, and then learn a user-specific transformation function to transform this space into a ranking according to the user's past preferences. An advantage of the proposed architecture is that it can be used to effectively recommend items using either content that describes the items or user-item ratings. We show that this approach significantly outperforms state-of-the-art recommender systems on the MovieLens 1M dataset.Comment: 6 pages, RecSys 2016 RSDL worksho

    Ages of the Pliocene-Pleistocene Alexandra and Ngatutura Volcanics, western North Island, New Zealand, and some geological implications

    Get PDF
    The Alexandra and Ngatutura Volcanics are the two southernmost of the Pliocene-Quaternary volcanic fields of western and northern North Island, New Zealand, northwest of Taupo Volcanic Zone TVZ. The Ngatutura Basalts are an alkalic basaltic field comprising monogenetic volcanoes. The Alexandra Volcanics consist of three basaltic magma series: an alkalic (Okete Volcanics), calcalkalic (Karioi, Pirongia, Kakepuku, and Te Kawa Volcanics), and a minor potassic series. Twenty new K-Arages are presented for the Alexandra Volcanics and 9 new ages for the Ngatutura Basalts. Ages of the Alexandra Volcanics range from 2.74 to 1 .60 Ma, and the ages of all three magma series overlap. Ages of the Ngatutura Basalts range from 1 .83 to 1.54 Ma. Each basaltic field has a restricted time range and there is a progressive younging in age of the basaltic fields of western North Island from the Alexandra Volcanics in the south, to Ngatutura, to South Auckland, and then to the Auckland field in the north. Neither of the Alexandra nor Ngatutura Volcanics shows any younging direction of their volcanic centres or any age pattern within their fields, and there is no systematic variation in age with rock composition. Any correlation of age with degree of erosion of volcanic cones is invalid for these basaltic fields; instead, the degree of erosion may be controlled by the lithology of the cones and possibly by the extent of preservation offered by the thick cover deposits of the Kauroa, Hamilton, and younger tephra beds. Stratigraphic relations have enabled the earliest member of the Kauroa Ash Formation to be dated at 2.3 Ma. This formation represents a series of widespread rhyolitic plinian and ignimbrite eruptions probably derived from TVZ and initiated during the Late Pliocene

    The case for joined-up research on carbon emissions from the building stock: adding value to household and building energy datasets

    Get PDF
    To reach UK objectives for reducing carbon emissions, it is argued that joined-up research on energy use in buildings is essential to develop and support government policy initiatives. The performance based approach introduced in Part-L of the 2006 Building Regulations has further underlined the role of coordinated research to monitor their effectiveness and provide feedback for subsequent revisions. Unfortunately, differences in dwelling classifications systems used in major household surveys currently hinder much of the supporting analysis that might improve SAP and other energy models. The Carbon Reduction in Buildings project has begun a process of integrating or organising existing building energy datasets into a coherent structure for the domestic sector. In addition, it is proposed to archive these for researchers via a building data repository that would facilitate joined-up research more widely

    Evaluating the impact of an enhanced energy performance standard on load-bearing masonry domestic construction: Understanding the gap between designed and real performance: lessons from Stamford Brook.

    Get PDF
    This report is aimed at those with interests in the procurement, design and construction of new dwellings both now and in the coming years as the Government’s increasingly stringent targets for low and zero carbon housing approach. It conveys the results of a research project, carried out between 2001 and 2008, that was designed to evaluate the extent to which low carbon housing standards can be achieved in the context of a large commercial housing development. The research was led by Leeds Metropolitan University in collaboration with University College London and was based on the Stamford Brook development in Altrincham, Cheshire. The project partners were the National Trust, Redrow and Taylor Wimpey and some 60 percent of the planned 700 dwelling development has been completed up to June 2008. As the UK house building industry and its suppliers grapple with the challenges of achieving zero carbon housing by 2016, the lessons arising from this project are timely and of considerable value. Stamford Brook has demonstrated that designing masonry dwellings to achieve an enhanced energy standard is feasible and that a number of innovative approaches, particularly in the area of airtightness, can be successful. The dwellings, as built, exceed the Building Regulations requirements in force at the time but tests on the completed dwellings and longer term monitoring of performance has shown that, overall, energy consumption and carbon emissions, under standard occupancy, are around 20 to 25 percent higher than design predictions. In the case of heat loss, the discrepancy can be much higher. The report contains much evidence of considerable potential but points out that realising the design potential requires a fundamental reappraisal of processes within the industry from design and construction to the relationship with its supply chain and the development of the workforce. The researchers conclude that, even when builders try hard, current mainstream technical and organisational practices together with industry cultures present barriers to consistent delivery of low and zero carbon performance. They suggest that the underlying reasons for this are deeply embedded at all levels of the house building industry. They point out also that without fundamental change in processes and cultures, technological innovations, whether they be based on traditional construction or modern methods are unlikely to reach their full potential. The report sets out a series of wide ranging implications for new housing in the UK, which are given in Chapter 14 and concludes by firmly declaring that cooperation between government, developers, supply chains, educators and researchers will be crucial to improvement. The recommendations in this report are already being put into practice by the researchers at Leeds Metropolitan University and University College London in their teaching and in further research projects. The implications of the work have been discussed across the industry at a series of workshops undertaken in 2008 as part of the LowCarb4Real project (see http://www.leedsmet.ac.uk/as/cebe/projects/lowcarb4real/index.htm). In addition, the learning is having an impact on the work of the developers (Redrow and Taylor Wimpey) who, with remarkable foresight and enthusiasm, hosted the project. This report seeks to make the findings more widely available and is offered for consideration by everyone who has a part to play in making low and zero carbon housing a reality

    Transfer Taxes on Survivor Annuity Benefits

    Get PDF
    corecore