207 research outputs found

    Genome-wide association study of adipocyte lipolysis in the GENetics of Adipocyte Lipolysis (GENiAL) cohort

    Get PDF
    Objectives: Lipolysis, hydrolysis of triglycerides to fatty acids in adipocytes, is tightly regulated, poorly understood, and, if perturbed, can lead to metabolic diseases including obesity and type 2 diabetes. The goal of this study was to identify the genetic regulators of lipolysis and elucidate their molecular mechanisms. Methods: Adipocytes from abdominal subcutaneous adipose tissue biopsies were isolated and were incubated without (spontaneous lipolysis) or with a catecholamine (stimulated lipolysis) to analyze lipolysis. DNA was extracted and genome-wide genotyping and imputation conducted. After quality control, 939 samples with genetic and lipolysis data were available. Genome-wide association studies of spontaneous and stimulated lipolysis were conducted. Subsequent in vitro gene expression analyses were used to identify candidate genes and explore their regulation of adipose tissue biology. Results: One locus on chromosome 19 demonstrated genome-wide significance with spontaneous lipolysis. 60 loci showed suggestive associations with spontaneous or stimulated lipolysis, of which many influenced both traits. In the chromosome 19 locus, only HIF3A was expressed in the adipocytes and displayed genotype-dependent gene expression. HIF3A knockdown in vitro increased lipolysis and the expression of key lipolysis-regulating genes. Conclusions: In conclusion, we identified a genetic regulator of spontaneous lipolysis and provided evidence of HIF3A as a novel key regulator of lipolysis in subcutaneous adipocytes as the mechanism through which the locus influences adipose tissue biology

    Genome-wide association study of adipocyte lipolysis in the GENetics of adipocyte lipolysis (GENiAL) cohort.

    Get PDF
    OBJECTIVES:Lipolysis, hydrolysis of triglycerides to fatty acids in adipocytes, is tightly regulated, poorly understood, and, if perturbed, can lead to metabolic diseases including obesity and type 2 diabetes. The goal of this study was to identify the genetic regulators of lipolysis and elucidate their molecular mechanisms. METHODS:Adipocytes from abdominal subcutaneous adipose tissue biopsies were isolated and were incubated without (spontaneous lipolysis) or with a catecholamine (stimulated lipolysis) to analyze lipolysis. DNA was extracted and genome-wide genotyping and imputation conducted. After quality control, 939 samples with genetic and lipolysis data were available. Genome-wide association studies of spontaneous and stimulated lipolysis were conducted. Subsequent in vitro gene expression analyses were used to identify candidate genes and explore their regulation of adipose tissue biology. RESULTS:One locus on chromosome 19 demonstrated genome-wide significance with spontaneous lipolysis. 60 loci showed suggestive associations with spontaneous or stimulated lipolysis, of which many influenced both traits. In the chromosome 19 locus, only HIF3A was expressed in the adipocytes and displayed genotype-dependent gene expression. HIF3A knockdown in vitro increased lipolysis and the expression of key lipolysis-regulating genes. CONCLUSIONS:In conclusion, we identified a genetic regulator of spontaneous lipolysis and provided evidence of HIF3A as a novel key regulator of lipolysis in subcutaneous adipocytes as the mechanism through which the locus influences adipose tissue biology

    Definitions of Metabolic Health and Risk of Future Type 2 Diabetes in BMI Categories: A Systematic Review and Network Meta-analysis.

    Get PDF
    OBJECTIVE: Various definitions of metabolic health have been proposed to explain differences in the risk of type 2 diabetes within BMI categories. The goal of this study was to assess their predictive relevance. RESEARCH DESIGN AND METHODS: We performed systematic searches of MEDLINE records for prospective cohort studies of type 2 diabetes risk in categories of BMI and metabolic health. In a two-stage meta-analysis, relative risks (RRs) specific to each BMI category were derived by network meta-analysis and the resulting RRs of each study were pooled using random-effects models. Hierarchical summary receiver operating characteristic curves were used to assess predictive performance. RESULTS: In a meta-analysis of 140,845 participants and 5,963 incident cases of type 2 diabetes from 14 cohort studies, classification as metabolically unhealthy was associated with higher RR of diabetes in all BMI categories (lean RR compared with healthy individuals 4.0 [95% CI 3.0-5.1], overweight 3.4 [2.8-4.3], and obese 2.5 [2.1-3.0]). Metabolically healthy obese individuals had a high absolute risk of type 2 diabetes (10-year cumulative incidence 3.1% [95% CI 2.6-3.5]). Current binary definitions of metabolic health had high specificity (pooled estimate 0.88 [95% CI 0.84-0.91]) but low sensitivity (0.40 [0.31-0.49]) in lean individuals and satisfactory sensitivity (0.81 [0.76-0.86]) but low specificity (0.42 [0.35-0.49]) in obese individuals. However, positive (0.4) likelihood ratios were consistent with insignificant to small improvements in prediction. CONCLUSIONS: Although individuals classified as metabolically unhealthy have a higher RR of type 2 diabetes compared with individuals classified as healthy in all BMI categories, current binary definitions of metabolic health have limited relevance to the prediction of future type 2 diabetes.The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement n° 115372, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution. This work was supported by the Netherlands Organization for Scientific Research (NWO), and the Medical Research Council UK (grant no. MC_U106179471). A.A. is supported by a Rubicon grant from the NWO (Project no. 825.13.004).This is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Care Association (ADA), publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org

    Elevated Plasma Levels of 3-Hydroxyisobutyric Acid Are Associated With Incident Type 2 Diabetes.

    Get PDF
    Branched-chain amino acids (BCAAs) metabolite, 3-Hydroxyisobutyric acid (3-HIB) has been identified as a secreted mediator of endothelial cell fatty acid transport and insulin resistance (IR) using animal models. To identify if 3-HIB is a marker of human IR and future risk of developing Type 2 diabetes (T2D), we measured plasma levels of 3-HIB and associated metabolites in around 10,000 extensively phenotyped individuals. The levels of 3-HIB were increased in obesity but not robustly associated with degree of IR after adjusting for BMI. Nevertheless, also after adjusting for obesity and plasma BCAA, 3-HIB levels were associated with future risk of incident T2D. We also examined the effect of 3-HIB on fatty acid uptake in human cells and found that both HUVEC and human cardiac endothelial cells respond to 3-HIB whereas human adipose tissue-derived endothelial cells do not respond to 3-HIB. In conclusion, we found that increased plasma level of 3-HIB is a marker of future risk of T2D and 3-HIB may be important for the regulation of metabolic flexibility in heart and muscles

    Circulating Selenium and Prostate Cancer Risk: A Mendelian Randomization Analysis.

    Get PDF
    In the Selenium and Vitamin E Cancer Prevention Trial (SELECT), selenium supplementation (causing a median 114 μg/L increase in circulating selenium) did not lower overall prostate cancer risk, but increased risk of high-grade prostate cancer and type 2 diabetes. Mendelian randomization analysis uses genetic variants to proxy modifiable risk factors and can strengthen causal inference in observational studies. We constructed a genetic instrument comprising 11 single nucleotide polymorphisms robustly (P < 5 × 10-8) associated with circulating selenium in genome-wide association studies. In a Mendelian randomization analysis of 72 729 men in the PRACTICAL Consortium (44 825 case subjects, 27 904 control subjects), 114 μg/L higher genetically elevated circulating selenium was not associated with prostate cancer (odds ratio [OR] = 1.01, 95% confidence interval [CI] = 0.89 to 1.13). In concordance with findings from SELECT, selenium was weakly associated with advanced (including high-grade) prostate cancer (OR = 1.21, 95% CI = 0.98 to 1.49) and type 2 diabetes (OR = 1.18, 95% CI = 0.97 to 1.43; in a type 2 diabetes genome-wide association study meta-analysis with up to 49 266 case subjects and 249 906 control subjects). Our Mendelian randomization analyses do not support a role for selenium supplementation in prostate cancer prevention and suggest that supplementation could have adverse effects on risks of advanced prostate cancer and type 2 diabetes
    corecore