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Abstract  5 

Genome-wide association studies of type 2 diabetes have implicated up to ~250 genomic regions in  6 
disease predisposition, with evidence for causal variants and genes emerging for several of these 7 
regions. Understanding of the underlying mechanisms, including the interplay between beta-cell 8 
failure, insulin sensitivity, appetite regulation, and adipose storage has been facilitated by the 9 
integration of multi-dimensional data on diabetes-related intermediate phenotypes, detailed genomic 10 
annotations, functional experiments and now multi-“omic” molecular features. Studies in diverse 11 
ethnicities and examples from population isolates have highlighted the value and need for a broader 12 
genomic approach to this global disease. Ongoing trans-ethnic discovery efforts and large-scale 13 
biobanks in diverse populations and ancestries may help to address some of the existing “Eurocentric” 14 
bias. Despite rapid progress in the discovery of the highly-polygenic architecture of type 2 diabetes, 15 
dominated by common alleles with small, cumulative effects on disease risk, current knowledge has 16 
shown little clinical utility for disease prediction or prevention, and only small contributions to 17 
subtype classification or stratified approaches to treatment. Successful development of academia-18 
industry partnerships for exome or genome sequencing in large Biobanks can deliver economies of 19 
scale, with implications for the future of genomics-focused research. 20 
 21 
 22 
  23 

Revised manuscript: clean version without tracked changes



2 

 

1. A global view of type 2 diabetes genomics  24 
 25 
The genetic basis of type 2 diabetes 26 
 27 
 In the last decade, hypothesis-free genome wide association studies (GWAS) have been the 28 
single most important contributor to identifying genetic determinants of type 2 diabetes (T2D), 29 
leading to the discovery of ~100 associated genomic regions or loci.

1-4
 The last year has seen a game-30 

change, a leap forward from smaller, cumulative advances to the description of now up to ~250 31 
genome-wide significant loci,

5-8
 including a large meta-analysis currently only available in pre-32 

publication format.
8
 Several developments have enabled such rapid progress.  33 

 34 
 A tripling in effective sample size was achieved through the integration of large-scale, accessible 35 
resources such as the UK Biobank (http://www.ukbiobank.ac.uk), teamed with the openness of 36 
diabetes researchers worldwide to share results of previous studies (GWAS results: http://diagram-37 
consortium.org; exome sequencing and genotyping results: http://www.type2diabetesgenetics.org). 38 
This has led to the inclusion of up to 74,000 T2D cases and 820,000 controls of European-descent,

7, 8
 39 

with an accompanying increase in power.  40 
 41 
 The breadth and depth of genetic variation ascertainment has also dramatically improved. Dense 42 
and accurate genotype imputation using the sequenced haplotypes of the 1000 Genomes

5
 and now the 43 

Haplotype Reference Consortium
7-9

 has enabled the interrogation of over 10 million genetic variants, 44 
with a ~100-fold increase compared with early GWAS efforts.

1
 Direct genotyping or sequencing of 45 

common to rare alleles of the exonic areas of the genome has enabled a better ascertainment of coding 46 
variation.

7, 10
 As a consequence, T2D susceptibility variants now range from 0.02-50% in minor allele 47 

frequency (MAF), and from 1.04 to 8.05 in per-allele odds ratio.
5-8

 While most signals are led by 48 
common variants with ever smaller effects, new risk alleles include several that are low-frequency or 49 
rare.

5-8
 This is consistent with the model of heritability of T2D derived from whole-genome 50 

sequencing experiments, characterised by a prominent contribution to heritability of common 51 
variation, a small contribution of rare variation and evidence of low selective pressure on 52 
predisposition alleles.

10
 Future meta-analyses of multiple large biobanks are likely to expand the 53 

catalogue of susceptibility variants to some ultra-rare alleles with extreme effect sizes (odds ratios 54 
>10), in addition to finding even more common regulatory alleles with very small effects (odds ratios 55 
<1.01; Figure 1). Direct genotyping and sequencing will be critical to replicate and identify 56 
associations for risk variants that are in the rare allele frequency spectrum (MAF below 0.5%),

11
 57 

specifically if discovered based on imputed genotypes given the difficulties in accurately imputing 58 
these variants even with expanded population reference panels.

9
  59 

 60 
 Clinical translation of these genomic associations critically depends on our understanding of 61 
underlying mechanisms. Establishing causal variants and variant-gene links has been a challenge in 62 
genetic studies. Denser imputation,

5, 8 
 extended genotyping in coding or metabolic-trait associated 63 

regions,
3, 6, 7

  direct sequencing,
10, 12

 larger sample size,
6-8

 integration of extensive genomic and 64 
regulatory annotations,

13, 14
 and progress in analytical fine-mapping approaches

15, 16
 have all made this 65 

fundamental task easier. For a given association signal, fine-mapping has been able to considerably 66 
narrow the size of the genomic region that likely contains the causal variant as well as the list of 67 
plausible causal variants in that genomic region.

5, 7, 8, 14
 Identified missense or nonsense variants with 68 

evidence of causal association
7, 8

  are now amenable to more direct in vitro and in vivo experimental 69 
follow-up. These represent critical advances in the translation of robust associations into biological 70 
understanding.  71 
 72 
 73 
  74 

http://www.ukbiobank.ac.uk/
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Trans-ethnic discovery efforts  75 
 76 
 The global burden of T2D with large differences in risk within and between populations warrants 77 
a global genomic approach to study its predisposition. Despite the progress in the discovery of its 78 
genetic basis, T2D is no exception when it comes to the continued underrepresentation of ethnic 79 
diversity in genetic research and discovery efforts.

17
 Genetic studies in multiple ethnicities are 80 

valuable for several reasons: (a) susceptibility variants may be present at appreciable allele frequency 81 
only in non-European populations, as elegantly shown by the discovery of associations at the HNF1A 82 
(via exome sequencing)

18
 SLC16A11 (via GWAS),

19
 and IGF2 (via exome genotyping)

20
  loci in 83 

populations of Latin American origin; (b) for shared susceptibility loci, trans-ethnic studies increase 84 
statistical power for new discoveries;

4, 6
 (c) the diverse linkage disequilibrium patterns across 85 

ancestries increase the resolution of fine-mapping analyses for the identification of causal variants;
2, 4

 86 
(d) exposure to diverse environments may reveal the effect of susceptibility variants which are 87 
masked in other settings (i.e. gene-environment interactions).  88 
 89 
 Important evidence has been emerging from GWAS of South Asian, East Asian, Latin American 90 
and African American populations

19, 21-25
 and trans-ethnic discovery efforts;

4, 6
 however, studies for 91 

non-European ancestries remain small in comparison. Ongoing trans-ethnic discovery efforts under 92 
the umbrella of the DIAMANTE consortium include over 170,000 T2D cases with around 45% of the 93 
effective sample size accounted for by non-European ancestries, currently including African (7%), 94 
East Asian (23%), Hispanic or Latino (6%) and South Asian (9%) ancestry participants (personal 95 
communication Prof Andrew Morris, University of Liverpool). While this represents a substantial 96 
advance compared to previous studies, research in the field remains heavily “Eurocentric”.  97 
 98 
 99 
Genetically isolated populations  100 
 101 
 Recent studies have clearly demonstrated the value of studying genetically isolated populations. 102 
In these settings deleterious variants with large phenotypic effect may raise by chance to higher allele 103 
frequencies, due to a phenomenon known as allelic drift.

26
 This makes it easier to identify disease 104 

associations for such variants in isolated compared to admixed populations, in which these variants 105 
may not be present or may be very rare. Such findings can provide insight into the aetiology of T2D 106 
that is generalizable outside of the context of the particular population in which they were discovered. 107 
 108 
 In the Inuit population from Greenland, homozygote carriers of a loss-of-function variant in 109 
TBC1D4 (p.Arg684*) were found to have a ~10 fold higher risk of diabetes, and ~1 standard 110 
deviation higher glucose and insulin at 2 hours following an oral glucose challenge.

27
 The variant 111 

segregates at high frequency in Inuits (MAF 17%), while being rare or monomorphic in other 112 
populations. Risk allele carriers have lower levels of GLUT4 in skeletal muscle

27
 (Figure 2). This 113 

finding highlights the causal role of insufficient GLUT4-mediated glucose uptake in muscle for 114 
postprandial hyperglycaemia and T2D risk (Figure 2). This corroborates evidence from the first 115 
report of a mutation significantly impairing GLUT4 translocation, identified in a child with acanthosis 116 
nigricans and extreme postprandial hyperinsulinemia carrying a heterozygous premature stop 117 
mutation (p.Arg363*) in TBC1D4.

28
 In the same population, exome sequencing has revealed the 118 

association of loss-of-function variant in ADCY3 with obesity and diabetes,
29

 a finding supported 119 
publicly available trans-ethnic T2D exome sequencing studies 120 
(http://www.type2diabetesgenetics.org),

29
 as well as studies of consanguineous families with severe 121 

obesity.
30

 122 
 123 
 Other examples also highlight convergence of evidence from studies of monogenic disease and 124 
population isolates. An autosomal dominant missense mutation in AKT2 was originally identified as 125 
the cause of hyperinsulinemia and diabetes in a family with severe insulin resistance and partial 126 
lipodystrophy.

31
 A recent exome-array and sequencing study detected a low-frequency AKT2 coding 127 

variant (p.Pro50Thr, MAF 1.1% in Finnish participants, but not detected in other populations) to be 128 
associated with higher fasting insulin levels,

32
 lower uptake of glucose in insulin-sensitive tissues 129 
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(shown in a separate recall-by-genotype study)
33

 and higher T2D risk, further highlighting the role of 130 
AKT2 in insulin sensitivity.  131 
 132 
 In Samoans, a founder population with a high prevalence of obesity and T2D, a common (26% 133 
allele frequency in Samoans but extremely rare in other populations) “thrifty” missense variant in 134 
CREBRF (rs373863828, p.Arg457Gln) was associated with substantially higher body mass index (1.4 135 
kg/m

2
 per allele).

34
 Interestingly, the adiposity-raising allele was associated with lower fasting glucose 136 

and protection from T2D. In an adipocyte model, overexpression of Arg457Gln selectively decreased 137 
energy use and increased fat storage, in line with its effect on body fat, potentially highlighting the 138 
metabolic benefits of a greater capacity of fat storage.

35
 139 

 140 
 141 

  142 
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2. Insights into pathways to diabetes through genomic discovery  143 
 144 
 Genetic studies of diabetes-related intermediate phenotypes in non-diabetic individuals have 145 
emerged as a way to gain mechanistic insights into T2D susceptibility that is complementary to 146 
disease-focused discovery GWAS.  147 
 148 
 149 
Glycaemic control and susceptibility to diabetes 150 
 151 
 Genetic studies of glucose and insulin related measures have been defined by the struggle 152 
between sample size and degree of refinement of phenotype ascertainment. Large efforts have focused 153 
on widely-available, simple measures as fasting glucose or insulin, and glycated haemoglobin.

36-42
 
 
In 154 

contrast,
 

efforts based on “gold-standard” measures involving frequently-sampled oral glucose 155 
tolerance tests or continuous intravenous measurements that are difficult to obtain at scale have had 156 
limited sample sizes.

43-48
 The former approach has been successful in the discovery of loci influencing 157 

glycaemic traits in non-diabetic individuals, and helped to identify insulin secretory effects as a major 158 
driver of associations for several of the common diabetes susceptibility loci (Figure 3).

37, 40, 41, 49
 159 

These studies also revealed considerable aetiologic heterogeneity in pathways to T2D, highlighting 160 
the multifactorial nature of T2D predisposition.

37, 40, 41, 49
  Gold-standard based studies have provided 161 

in-depth physiologic characterisations of diabetes susceptibility variants,
43, 45

 but also shown promise 162 
for discovery by identifying loci (e.g. GRB10,

44
 BCL2,

46
 FAM19A2,

46
 NAT2

47
) that have eluded 163 

discovery in much larger meta-analyses of more widely-available, simpler measures or indices. Both 164 
approaches have been instrumental in understanding the underlying mechanisms of common T2D 165 
predisposition and the genetic influences on circulating glucose levels, insulin secretion and 166 
resistance.  167 
 168 
 

Overlaying diabetes susceptibility variants, glycaemic traits and pancreatic islet regulatory and 169 
functional data

13, 14, 50-55
  has provided the foundation for an improved understanding of mechanisms 170 

linking beta-cell glucose sensing and insulin secretion with T2D risk. High-throughput functional 171 
screens of gene silencing in human beta-cell lines are now available and can empower systematic 172 
characterisation of the functional impact of novel likely-causal genes on insulin secretion.

55
  173 

 174 
 A future challenge in this field will be for intermediate trait studies to stay apace with the rapid 175 
increases in sample size of diabetes association analyses. This is complicated by the practical 176 
difficulties of obtaining fasting samples, let alone more invasive “gold standard” intravenous 177 
measurements, in large biobanks. 178 
 179 
 180 
Excess overall fat and “central” role of peripheral fat 181 
 182 
 Excess fat is the hallmark of overeating and lack of physical exercise and has been a major focus 183 
of genetic research. Large-scale studies of body mass index and related measures have linked genes 184 
highly expressed in the central nervous system with general obesity in different ancestries.

56-58
 This 185 

has provided complementary evidence to original discoveries that have revealed the fundamental role 186 
of appetite regulation in monogenic obesity,

59
 in particular the leptin-melanocortin axis.  187 

 188 
 Observational epidemiology has clearly shown that, for a given level of overall adiposity, the 189 
distribution of fat in the body is associated with susceptibility to insulin resistance, diabetes and its 190 
complications.

60-65
 Genetic discovery approaches integrating multiple insulin-resistance related 191 

phenotypes have identified variants associated with insulin resistance, increased risk of diabetes and 192 
coronary disease, but lower fat mass in peripheral body compartments, in particular legs and 193 
subcutaneous regions.

35
 These insulin resistance loci are enriched with genes harbouring mutations in 194 

Mendelian forms of lipodystrophy and are associated with increased odds of severe lipodystrophic 195 
insulin resistance.

35 
In the context of other evidence about the protective role of fat deposition in 196 

peripheral compartments,
45, 66-72

 these results suggest that reduced ability to safely store excess energy 197 
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in the peripheral regions of the body leads to ectopic fat storage and higher cardio-metabolic risk in 198 
the general population, similar to clinical manifestations of severe forms of lipodystrophy (Figure 4).  199 
 200 
 Molecular mechanisms underlying this specific aetiology include the impaired ability to generate 201 
new adipocytes and the regulation of gene expression in these cells, which is supported by 202 
experimental evidence around PPARG,

73
 KLF14,

70, 74
 IRS1, CCDC92, DNAH10 and L3MBTL3.

35
 203 

Impaired intravascular lipoprotein lipase (LPL)-mediated lipolysis, the mechanism that regulates lipid 204 
buffering from the circulation to peripheral tissues, is also implicated

35
 (Figure 4). Further studies are 205 

necessary to understand how fat deposition in specific body compartments influences metabolic 206 
disease risk in the general population and move beyond the very simple notion of “apple” and “pear” 207 
body shapes.  208 
 209 
 210 
Prioritising causal pathways by integrating multi-omic data with clinical outcomes 211 
 212 
 As the sample size of genetic studies has rapidly grown, so has the ability to measure detailed 213 
molecular features in biological samples using high-throughput technology. Global patterns of 214 
methylation and other epi-genetic features (epigenomics),

75
 gene expression (transcriptomics),

76
 215 

proteins (proteomics)
77, 78

 or metabolites (metabolomics)
79-81

 can now be measured at epidemiological 216 
scale enabling genetic mapping in genome-wide studies.  217 
 218 
 Genetic studies of “-omics” molecular features can help advance the understanding of the causes 219 
of diabetes (and other complex) diseases in multiple ways, by (a) characterising the phenotypic 220 
consequences of diabetes susceptibility variants identified by GWAS; (b) helping to identify causal 221 
variants and genes at known susceptibility loci; (c) enabling the estimation of causal associations 222 
between molecular traits and disease risk using the principles of Mendelian randomisation.  223 
 224 
 So far, no studies have systematically followed-up associations of T2D susceptibility variants 225 
with circulating metabolomic or proteomic profiles. Studies overlaying regulatory annotations and 226 
gene expression in pancreatic beta-cells with T2D GWAS results show the value of transcriptomic 227 
analyses for the identification of diabetes susceptibility genes and mechanistic understanding.

13
 The 228 

increasing availability of similar data on a variety of cell types (including other relevant metabolic 229 
tissues, such as skeletal muscle, adipose, liver) will make it possible to systematically assess the 230 
relevance of different tissues, cell types and tissue-specific mechanisms in T2D pathophysiology.  231 
 232 
 “Mendelian Randomization” studies using genetics to assess causal associations between 233 
molecular traits and T2D risk have traditionally focused on specific pathways and biomarkers rather 234 
than “-omics” profiles. This partly reflects challenges in applying causal inference frameworks in the 235 
context of correlated and co-regulated molecular exposures such as blood metabolites or proteins.

82
 236 

For example, studies of the branched chain amino acid pathway have provided human genetic 237 
evidence of multi-directional causal relationships between their metabolism, insulin resistance and 238 
risk of diabetes,

83
 building upon observations dating back to the 1960s.

84-86
 This and other 239 

metabolomics genetic studies
79-81

  illustrate how variation at key metabolic regulators (e.g. enzymes) 240 
affects a large set of biologically and phenotypically related measures within a pathway. Hence, 241 
inference from associations with diabetes may be restricted to a specific locus of regulatory 242 
importance rather than levels of one or more metabolites. Studies of the epigenetic patterns associated 243 
with obesity and T2D have illustrated that these are mostly consequences rather than the cause of 244 
disease processes.

87
  245 

 246 
 New methods integrating genomic and other “-omics” data have been developed to facilitate 247 
more sophisticated studies in this field.

88-91
 While individual multi-omic studies have already been 248 

conducted in sample sizes of several thousands, these deeply phenotyped epidemiological studies are 249 
still comparatively small in the context of genomic research and the relevance of identified loci to 250 
metabolic diseases remains largely unexplored. However, they can serve as models for what might be 251 
achieved when technology and cost developments enable high-throughput multi-omic phenotyping at 252 
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the scale of large national Biobanks with hundreds of thousands of participants systematically 253 
followed up for a broad range of diseases.  254 
 255 

 256 

  257 
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3. Genomics and therapeutics in T2D 258 
 259 
 The Chief Medical Officer’s Report “Generation Genome” published in 2017 highlighted key 260 
areas in which genomics can inform disease therapeutics,

92
 providing a helpful framework to describe 261 

recent developments of genomics-informed therapeutics in T2D (Table 1). 262 
 263 
New targets 264 
 265 
 The identification of novel drug targets is a major stated objective of T2D genetic studies. The 266 
finding that drug targets supported by human genetics evidence are more likely to succeed in the 267 
selective drug development process

93-95
 and recent success in the development of new lipid-lowering 268 

drugs following genetic findings from different approaches and sources at the PCSK9, LPA, APOC3 269 
and ANGPTL3 loci

96, 97
  have exponentially increased interest in this approach. 270 

 271 
 Three diabetes-susceptibility genes identified in early GWAS studies

1
 encode drug targets for 272 

existing glucose lowering therapy (PPARG, thiazolidinediones; KCNJ11/ABCC8, sulfonylureas),  273 
suggesting that other genes identified through hypothesis-free approaches may become new drug 274 
targets. However, human genetics has played a peripheral role in the development of the most recently 275 
approved classes of glucose-lowering drugs, including dipeptidyl peptidase-4 inhibitors,

98
 GLP1R 276 

agonists
98

 and sodium-glucose co-transporter-2 inhibitors. 99
 277 

 278 
 With over a hundred genetic loci now robustly associated with diabetes, why is there still not a 279 
clear “PCSK9-like” example? Generic and therapeutic-area specific obstacles may play a role. First, 280 
several of the causal genes implicated by GWAS have only recently emerged, but it takes several 281 
years for new drugs to enter clinical development. Specifically targeting pancreatic islets, adipocytes, 282 
skeletal myocytes or brain cells, as opposed to circulating proteins is challenging. Safety concerns 283 
have been a limitation in the development of appetite suppressants modifying genetically-validated 284 
targets, as illustrated by the failure of first generation agonists of the melanocortin 4 receptor due to 285 
on-target side effects.

100
 Also, many loci for T2D act via impaired insulin secretion. The existence of 286 

different classes of approved and widely-used insulin secretagogues may limit the interest of 287 
pharmaceutical companies in new drug development in this area, given the focus on developing 288 
commercially-differentiated products.

94
 289 

 290 
 Protective loss-of-function variants are particularly interesting for drug development purposes 291 
because they provide insights into the likely consequences of inhibiting a gene product and, if carriers 292 
are healthy, provide initial evidence of the likely safety of pharmacological inhibition.

93
 Sequencing 293 

of the early T2D GWAS gene SLC30A8, encoding a pancreatic islet zinc transporter (ZnT8), has 294 
identified rare loss-of-function variants associated with protection against T2D (odds ratio for carriers, 295 
0.34).

101
 More recently, an exome array genotyping study in populations of Latino descent identified a 296 

protective variant (odds ratio per allele, 0.80) in IGF2 associated with incorrect splicing of isoform 2 297 
of the gene, suggesting that selectively inhibiting this isoform in relevant tissues may be 298 
therapeutically exploited.

20
 However, efforts to inhibit ZnT8 or insulin-like growth factor 2 have yet 299 

to reach clinical development. The potential therapeutic implications of recently reported protective 300 
associations of a loss-of-function variant in GPR151 against obesity, diabetes and coronary artery 301 
disease also deserve consideration.

102
  302 

 303 
 304 
Genetically-tailored treatment 305 
 306 
 Diabetes medicine holds some of the most elegant examples of tailoring treatment to the specific 307 
underlying genetic or molecular defect, but all of these relate to monogenic forms of the disease.

103-105
   308 

No such examples exist for common susceptibility loci, but this area is certainly understudied.  309 
 310 
 Response to glucose-lowering treatment shows a measurable degree of heritability and evidence 311 
of polygenicity,

106
 indirectly suggesting that combinations of multiple alleles might be able to identify 312 
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patients who would be more or less responsive to certain drugs. Opportunities in this field arise from 313 
the definition and characterization of polygenic scores combining common variants that capture a 314 
particular aetiology. Variants with large effects, such as those from population isolates or rare variants 315 
with large effects from GWAS in admixed populations could also provide suitable basis for 316 
pharmacogenetics applications. By studying the functional consequences of all theoretically possible 317 
missense variants in PPARG, Majithia and colleagues elegantly showed that diabetes-associated 318 
mutations in the gene display heterogeneous in vitro response to thiazolidinediones,

107 
 which could 319 

provide the basis for tailored therapy or dosing in carriers of these specific alleles, as illustrated in 320 
initial case reports.

108
 321 

 322 
 323 
Drug dosing or response 324 
 325 
 Efforts to identify interactions between genetic background and T2D treatment have been the 326 
subject of a recent systematic review,

109
 reporting that research in the field is mostly based on 327 

observational studies rather than randomized controlled trials and candidate gene rather than 328 
hypothesis-free approaches, with a few notable exceptions discussed below. In a pharmacogenetic 329 
clinical trial, Srinivasan et al. found that TCF7L2 variants associated with T2D influences the acute 330 
response to both glipizide and metformin in people with risk factors for T2D or treatment-naïve T2D 331 
patients.

110
 Two genome-wide association studies have identified common genetic variants at the 332 

ATM
111

 and SLC2A2
112 

 loci associated with response to metformin. The difference in the effect of 333 
metformin for these variants was estimated at around ~0.15-0.17% of HbA1c per allele, roughly 334 
corresponding to a daily dose of ~250 mg of metformin.

111, 112
 A genome-wide discovery embedded 335 

into a clinical trial found novel associations for common and rare variants in PRPF31, CPA6, and 336 
STAT3 with metformin response.

113
 While these findings are important for the understanding of 337 

genetic susceptibility to drug response, the low price of metformin and pragmatic focus on reaching 338 
the HbA1c therapeutic target or the maximum tolerated dose of this drug are barriers to clinical use of 339 
these genetic tests.  340 
 341 
 342 
Drug repurposing 343 
 344 
 If “pharmacomimetic” genetic variants can be used to find new targets, they could theoretically 345 
be used to find new indications for existing drugs. While there are not yet any established examples of 346 
genetically-directed repurposing of approved drugs in diabetes, Imamura et al. used a systematic 347 
bioinformatics approach to identify new T2D drug targets, revealing potential repurposing 348 
opportunities for drugs targeting the gene products of GSK3B and JUN.

23
 Recent findings around 349 

lipoprotein lipase may offer an example of genetically-driven extension of the target population for 350 
drugs that are in active development. In late 2016, we reported a gain-of-function variant (rs328, 351 
p.Ser447*) in LPL associated with insulin sensitivity and protection from diabetes and an independent 352 
a loss-of-function variant (rs1801177, p.Asp36Asn) associated with higher diabetes risk.

35
 This 353 

followed directionally consistent findings for triglyceride levels and heart disease
114

, leading to the 354 
hypothesis that the several agents targeting the LPL pathway that are in development for the treatment 355 
of hypertriglyceridemia

97, 115-118
 could also be valuable as insulin sensitizing agents. The association 356 

with diabetes of rs328 has since been replicated
119

 and the variant or its proxies have emerged in 357 
recent GWAS of diabetes,

7, 8
 with consistent findings published for a loss-of-function in the natural 358 

LPL-inhibitor ANGPTL4 (rs116843064, p.Glu40Lys),
119

 lending powerful support to this hypothesis.  359 
 360 
 361 
Drug safety 362 
 363 
 Genetic variants have been used to understand both desired and undesired secondary effects of 364 
pharmacological modulation. Similar to statins and genetic variants at their target HMGCR,

120, 121
 also 365 

cholesterol lowering alleles at NPC1L1 (encoding the target of ezetimibe)
122

 and PCSK9 (PCSK9 366 
inhibitors)

122-124
 are associated with a lower risk of coronary heart disease, but higher diabetes risk. 367 
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While this suggested that also non-statin cholesterol lowering agents could be associated with higher 368 
diabetes risk, recent randomized controlled trials of ezetimibe

125
 and PCSK9-inhibitors

126
 did not 369 

identify large or statistically-significant diabetogenic effects.  370 
 371 
 Cardiovascular associations of genetic variants that mimic diabetes medications are particularly 372 
insightful, given the regulatory requirement that glucose-lowering drugs should not be associated with 373 
a higher risk of cardiovascular disease

127
 and the ongoing paradigm shift from glycemic control to 374 

prevention of complications in diabetes management.
128

 The concomitant publication of randomized 375 
controlled trials of a glucagon-like peptide receptor 1 (GLP1R) agonists

129, 130
 and of genetic studies 376 

of a putative gain-of-function variant of GLP1R (rs10305492, p.Ala316Thr),
131

 both showing cardio-377 
protective associations for GLP1R activation, illustrates this concept. A similar approach has shown 378 
cardio-protective associations for a functional variant in ABCC8 (rs757110, p.Ala1369Ser),

132
 379 

providing genetic insights into the cardiovascular effects of sulfonylureas for which clinical trial 380 
evidence is inconclusive.

133
 381 

 382 

  383 
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4. Clinical relevance and future outlook  384 
 385 
Genomics in the clinic 386 
 387 
 In addition to diabetes therapeutics, genomics has been proposed to help disease prediction and 388 
diagnosis of common subtypes. The polygenic architecture of T2D dominated by many common 389 
variants with small effects and tagging several different aetiologies has critical implications for both 390 
applications. 391 
 392 
 The level of prediction achieved by common alleles contrasts with patients’ often more 393 
deterministic understanding of what “genetic risk” constitutes, which is informed by examples of 394 
highly penetrant causes of monogenic diseases. Accurate prediction in combination with preventive 395 
lifestyle interventions can be used for targeted primary prevention and avoidance of complications 396 
arising from metabolic dysregulation that is present for years before diagnosis.

134
 However, existing 397 

diabetes prediction models perform well in the general population and can be used to non-invasively 398 
identify individuals at high risk.

135
 Earlier prospective studies using up to 65 variants have shown that 399 

polygenic T2D risk scores improve prediction performance only modestly when considered over and 400 
above risk factors that can assessed non-invasively, such as age, sex, body mass index or family 401 
history.

136, 137
 New approaches based on machine learning and complex statistical modelling have 402 

been proposed as improved methods for genetic prediction.
138

 Critically, the availability of good 403 
inexpensive predictors from a patient’s anamnesis or examination (e.g. family history, BMI) together 404 
with clinically established tests (i.e. blood glucose, HbA1c) that inform both future risk prediction and 405 
diagnosis greatly limits the scope for introduction of genetic information for  T2D prediction in the 406 
clinic. Evidence exists that established genetic variants have the weakest relative effect and add the 407 
least to prediction in people with highest levels of traditional risk factors and hence at highest absolute 408 
risk, the exact subgroup of the population in which preventive interventions and the cost-effectiveness 409 
of screening would be greatest. 410 
 411 
 Diabetes is a multifactorial disease and it has been proposed that genetics could help classify 412 
common disease subtypes. Apart from gestational diabetes and rare, specific Mendelian forms for 413 
which genetics already helps to guide diagnosis and treatment, diabetes is currently crudely classified 414 
into two broad types (>90% T2D) based on clinical presentation and rapid requirement of insulin.

139
 415 

Thomas et al. have provided evidence for the presentation of T1D up to the sixth decade of life and 416 
that a polygenic score specifically associated with type 1 but not type 2 diabetes can help to rule out 417 
T1D in late onset cases.

140
 But due to the overwhelming predominance of T2D at older ages, the 418 

score’s positive predictive value is too low to confidently identify late onset T1D patients, in whom 419 
initial management may not be optimal if misdiagnosed as T2D. Interesting studies aiming to identify 420 
T2D subgroups using data-driven agnostic approaches have recently emerged. For instance, using six 421 
diabetes-related parameters (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and 422 
indices of insulin secretion and resistance), Ahlqvist et al. have provided evidence of five subtypes of 423 
T2D that differ in disease trajectories and risk of complications.

141
 Using electronic medical records, 424 

Li et al. previously reported evidence of three subtypes,
142

 suggesting that data-driven aetiologic 425 
classifications are influenced by context and data availability. Investigations using “-omics” 426 
measurements may further extend these initial attempts at a more refined disease categorisation. 427 
While the existance of different aetiologic subtypes in T2D is widely accepted, a robust and definitive 428 
classification is missing. In contrast with approaches aimed at classifying T2D in subgroups and 429 
categories, it has been proposed that a more nuanced approach to aetiologic classification would better 430 
suit the highly polygenic and multifactorial background of this disease.

143
 431 

 432 
 433 
Genomic medicine and academia-industry partnerships 434 
 435 
 In the UK, transformative sequencing projects are currently underway. The 100,000 Genome 436 
Project delivers the benefits of genomic medicine to NHS cancer and rare disease patients now and 437 
has so far sequenced over 55,000 whole genomes (https://www.genomicsengland.co.uk/the-100000-438 
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genomes-project/). This project has shown the need for economies of scale in the delivery of genomic 439 
medicine, and NHS England is recommissioning and modernising NHS Genomic Laboratory Services 440 
to develop a first-class genomic service. UK Biobank (http://www.ukbiobank.ac.uk/) has transformed 441 
opportunities for population research in this country and internationally and is entering a new phase 442 
with the announcement to exome-sequence all 500,000 participants by 2019. Such an accelerated 443 
timeline was only possible through major funding by a consortium of five pharmaceutical companies, 444 
brought together by Regeneron Pharmaceuticals, following from their first initiative to sequence 445 
50,000 participants in collaboration with GSK. In the USA, a partnership between Regeneron and the 446 
Geisinger Health System for the exome sequencing of over 50,000 people has already shown the 447 
value of integrating genetic and electronic health record data at scale.

144, 145
 These are only two 448 

examples of commercial partners having access to participant and patient data, including information 449 
collected as part of routine clinical care in electronic health records. The financial benefits of such an 450 
effort are something to be considered in the light of the scientific opportunities that this investment 451 
and the generated sequence information will provide to biomedical researchers worldwide when they 452 
gain access, as will be the case for UK Biobank.  453 
 454 
 At the same time, large-scale Biobanks collecting genetic, physiological, longitudinal electronic 455 
health records and other health data have been established in many countries around the word, 456 
focusing on clinical hospital populations (e.g. BioVU: https://www.vumc.org/dbmi/biovu), insurance 457 
or care provider populations (e.g. Million Veteran Program: https://www.research.va.gov/mvp/), or 458 
national population cohorts (e.g. China Kadoorie Biobank, German National Cohort etc). The NIH 459 
funded 1 million persons “All of Us” Research Program was originally launched as a “new Precision 460 
Medicine Initiative to bring us closer to curing diseases like cancer and diabetes”.

146
 It specifically 461 

aims to actively recruit ethnic minority populations to help address the existing bias by including 462 
sufficient numbers of some of the many currently underrepresented groups.   463 
  464 
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Engaging patients in research  465 
 466 
 Genomic sequencing puts the patient at the centre of drug discovery and validation. Close 467 
collaboration between academia, the pharmaceutical and other industries can catalyse the 468 
development of novel therapies for T2D based on genomic insight. To make full use of these 469 
opportunities for patients in this country and elsewhere, the research community needs to engage in a 470 
dialogue with patients and the public about genomic medicine and research and their implications for 471 
uses and misuses of genomic data. 472 
  473 
 Notwithstanding the potential that such partnerships have to improve health research and 474 
outcomes, research commissioned by the Wellcome Trust 475 
(https://wellcome.ac.uk/sites/default/files/public-attitudes-to-commercial-access-to-health-data-476 
wellcome-mar16.pdf) and work delivered by Genomics England as part of their “Genomics 477 
Conversation” (https://www.genomicsengland.co.uk/a-year-of-conversations-about-genomics) have 478 
highlighted that patients’ and the public have concerns about data safety, i.e. non-legitimate uses, and 479 
commercial access to health data, including pharmaceutical and insurance companies.  480 
  481 
 The Chief Medical Officer’s Report “Generation Genome” considered the ethical, social and 482 
legal implications of genomic medicine in this country

92
 and highlighted the need for highest levels of 483 

data security for storage of identifiable data. However, it is not possible to give an absolute guarantee 484 
of data security and the potential harms arising from criminal data breaches need to be put in 485 
proportion with harms arising from restricting legitimate research uses of health data. For people 486 
living in the UK, universal free access to the National Health Service means that there is less reason to 487 
fear discrimination with regards health care insurance on the grounds of genetic testing. While there is 488 
currently no explicit legislation, the existing voluntary agreement with insurance providers also means 489 
that an estimated 95% of insurance customers would not need to disclose genetic test results for 490 
example for life assurance, critical illness cover, or income protection, as disclosure is tied to the 491 
policy value. The House of Commons Select Committee on Science and Technology recently 492 
recommended to extend the existing voluntary agreement, but closely monitor patient’s views and the 493 
experiences in other countries with a legal prohibition 494 
(https://publications.parliament.uk/pa/cm201719/cmselect/cmsctech/349/34908.htm#_idTextAnchor0495 
41). 496 
 497 
 498 
Conclusions 499 
 500 
 Advances in genomic research have facilitated rapid progress in clarifying the genetic basis of 501 
T2D and characterising causal variants and variant-gene links. Future opportunities lie in larger-scale 502 
sequencing, discovery across diverse ancestries, studies in genetically isolated populations and in 503 
massive-scale biobanks. Successful development of academia-industry partnerships can deliver 504 
economies of scale, with implications for the future of genomics-focused research. 505 
  506 
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Review Methods  507 
 508 
We searched Pubmed from inception to March 1

s t
 2018 using the following search 509 

strategy: (Diabetes Mellitus, Type 2[MeSH] OR NIDDM OR  Maturity-Onset Diabetes 510 
OR  Diabetes Mellitus, Noninsulin-Dependent OR  Diabetes Mellitus, Adult -Onset OR  511 
Adult-Onset Diabetes Mellitus OR  Diabetes Mellitus, Adult Onset OR  Diabetes 512 
Mellitus, Ketosis-Resistant OR  Diabetes Mellitus, Ketos is Resistant OR  Ketosis-513 
Resistant Diabetes Mellitus OR  Diabetes Mellitus, Maturity -Onset OR  Diabetes 514 
Mellitus, Maturity Onset OR  Diabetes Mellitus, Non Insulin Dependent OR  Diabetes 515 
Mellitus, Non-Insulin-Dependent OR  Non-Insulin-Dependent Diabetes Mellitus OR  516 
Diabetes Mellitus, Noninsulin Dependent OR  Diabetes Mellitus, Slow -Onset OR  517 
Diabetes Mellitus, Slow Onset OR  Slow-Onset Diabetes Mellitus OR  Diabetes 518 
Mellitus, Stable OR  Stable Diabetes Mellitus OR  Diabetes Mellitus, Type II OR  519 
Maturity-Onset Diabetes Mellitus OR  Maturity Onset Diabetes Mellitus OR  MODY 520 
OR  Type 2 Diabetes Mellitus OR  Noninsulin-Dependent Diabetes Mellitus OR  T2D 521 
OR T2DM OR Type 2 Diabetes[tiab] OR Type 2 diabetes mellitus OR diabetes[ti]) AND 522 
(Genome-Wide Association Study[MeSH] OR Association Studies, Genome-Wide OR 523 
Association Study, Genome-Wide OR Genome-Wide Association Studies OR Studies, 524 
Genome-Wide Association OR Study, Genome-Wide Association OR Genome Wide 525 
Association Scan OR Genome Wide Association Studies OR GWA Study OR GWA 526 
Studies OR Studies, GWA OR Study, GWA OR Whole Genome Association Analysis 527 
OR Whole Genome Association Study OR Genome Wide Association Analysis OR 528 
Genome Wide Association Study). To look for new studies published in pre -publication 529 
(non peer-reviewed) form, we searched BioRxiv using the advanced search function 530 
(https://www.biorxiv.org/search): articles posted in the “genetics” or “genomics” 531 
collections, with the key word “diabetes” in the title or abstract, posted between the 1

s t
 532 

of January 2017 and the 9
th

 of April 2018. These literature searches were integrated 533 
with reference files of the authors and their colleagues, reference lists of original 534 
articles, reviews, and meta-analyses. Given exhaustive reviews on early genetic 535 
association studies by McCarthy

1
 and Morris

2
, amongst others, we focused on recent 536 

developments and articles providing insights into clinical translation of genetic 537 
findings. 538 
  539 
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Tables  

Table 1. Contribution of genetic findings to T2D therapeutics in key areas. 

Area of 

contribution 
Rationale Considerations and examples in T2D research 

New drug target 

identification 

In retrospective analyses, drugs with human genetics support are more 

likely to successfully transition through the drug development pipeline. 

Rapid development of new lipid-lowering drugs with genetic validation 

illustrates potential. 

Loss-of-function variants provide insights into likely efficacy and safety 

of inhibition, while gain-of-function on stimulation of target. 

Genes encoding the targets of glucose lowering agents have been found 

by early GWAS, but new classes of diabetes drugs have not been 

developed as a result of human genetics findings.  

Most loci identified by GWAS have not lead to new drug development.  

Protective loss-of-function variants in SLC30A8 and IGF2 provide 

interesting examples that still await new drug development. 

Mutation specific 

treatment 

Pharmacological interventions may be particularly effective in patients 

with particular underlying aetiology or genetic predisposition. 

Prominent examples are from Mendelian genetics, lack of examples for 

common forms of diabetes with polygenic aetiologic contribution. 

Elegant exemplar from systematic study of all possible missense 

variants of PPARG. 

Opportunities in specific areas have not been fully exploited. 

Drug dosing or 

response 
Drugs may require dose-adjustment according to genetic background. 

Common variants at the ATM and SLC2A2 loci have been robustly 

associated with response to metformin, but genetic testing is not used in 

the clinic. Several studies including a recent trial have proposed an 

effect of TCF7L2 variants on response to glucose-lowering drugs. 

Drug repurposing 
As with new target identification, genetic variants that “mimic” existing 

therapeutic agents may provide the basis for repurposing. 

No established example of repurposing from other therapeutic areas to 

diabetes. Recent GWAS have explored repurposing opportunities using 

bioinformatics approaches. 

Genetic findings around the LPL pathway may provide basis for 

extension of future indications and target population for emerging drugs 

targeting this pathway. 

Drug safety 

Genetic variants can inform on desired and undesired secondary effects 

of pharmacological modulation of the encoded drug target. 

In diabetes, it is critical to study the cardiovascular safety of existing and 

new agents. 

The example of low-density lipoprotein cholesterol lowering genetic 

variants in genes encoding targets of cholesterol lowering therapy (i.e. 

HMGCR, NPC1L1 and PCSK9) and diabetes risk illustrate power and 

challenges of genetic approaches, given the partial consistency between 

genetic and clinical trial results.  

GLP1R and ABCC8 variants have been used to gain insights into 

cardiovascular safety of existing glucose-lowering drugs. 

Abbreviations: GWAS, genome-wide association studies. 
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Figure Legends 

 

Figure 1. Illustrative representation of genome-wide studies in type 2 diabetes and their power to 

detect certain types of susceptibility alleles for a given sample size. Susceptibility alleles above the 

solid black lines are detectable with a given approach. The graph is informed by the results of actual 

historical
2
 and current

8
 GWAS studies as well as whole-genome and exome sequencing studies that 

provided an empirical model for the genetic architecture of type 2 diabetes.
9 

Exemplar genetic 

susceptibility loci are reported in the figure. Abbreviations: GWAS, genome-wide association studies; OR, 

odds ratio. 

 
Figure 2. Aetiologic model for the role of TBC1D4 in GLUT4 translocation and insulin-mediated 

glucose uptake in the skeletal muscle.  

 

Figure 3. Models for normal and impaired insulin secretion. Genetic variants affecting these processes 

result in impaired insulin secretion and higher diabetes risk (right panel), e.g. variants at KCNJ11 and 

ABCC8 identified in genome-wide association studies. 

 

Figure 4. Aetiologic model for the contribution of peripheral adipose storage capacity to metabolic 

and cardiovascular disease and role of adipogenesis and intravascular lipolysis in this process. Some 

of the images have been samples and modified from SMART, Servier Medical Art, (URL: 

https://smart.servier.com/) under Creative Commons Attribution 3.0 Unported License 

(https://creativecommons.org/licenses/by/3.0/). 
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Abstract  5 

Genome-wide association studies of type 2 diabetes have implicated up to ~250 genomic regions in 6 
disease  disease predisposition, at several of whichwith there is now strong evidence is now emerging 7 
for the underlying causal alleles variants and genes emerging for several of these regions. 8 
Understanding of the underlying mechanisms, including the interplay between beta-cell failure, 9 
insulin sensitivity, appetite regulation, and adipose storage has been facilitated by tThe integration of 10 
multi-dimensional data on glycaemic and anthropometricdiabetes-related intermediate phenotypes, 11 
detailed genomic annotations, functional work resultsexperiments and now multi-“omic” molecular 12 
features has furthered the understanding of mechanisms underpinning these associations, including 13 
the interplay between beta-cell failure, insulin sensitivity, appetite regulation and adipose storage. 14 
Studies in diverse ethnicities and examples from population isolates have highlighted the value and 15 
need for a broader genomic approach to this global disease. Ongoing trans-ethnic discovery efforts 16 
and emerging large-scale bBiobanks in diverse populations and ancestries may help to address some 17 
of the existing “Eurocentric” bias. While studies in diverse ethnicities and selected examples from 18 
population isolates have stressed the value and need for a broader genomic approach to this global 19 
disease, research in the field is still heavily “Eurocentric”. Despite rapid progress in the discovery of 20 
the highly-polygenic architecture of type 2 diabetes, dominated by common alleles with small, 21 
cumulative effects on disease risk, current knowledge has shown no little clinical utility for disease 22 
prediction or prevention, and only small contributions to subtype classification or stratified 23 
approaches to treatment. Successful development of academia-industry partnerships for exome or 24 
genome sequencing in large Biobanks can deliver economies of scale, with implications for the future 25 
of genomics-focused research. 26 
 27 
Development of academia-industry partnerships can help to deliver economies of scale and provide 28 
opportunities for genomics-informed drug development and validation. 29 
 30 
  31 
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1. A global view of type 2 diabetes genomics  32 
 33 
The genetic basis of type 2 diabetes 34 
 35 
  In the last decade, hypothesis-free genome wide association studies (GWAS) have been the 36 
single most important contributor to identifying genetic determinants of type 2 diabetes (T2D), 37 
leading to the discovery of ~10020 associated genomic regions or loci.

1-4
 
1-7

 “The last year has seen a 38 
game-change, a leap forward from smaller, cumulative advances to the description of now up to ~250 39 
genome-wide significant loci,

5-8
 including a large meta-analysis currently only available in pre-40 

publication format
8
.
8
 Several developments have enabled such rapid progress.  41 

 42 
 43 
  A tripling in effective sample size was achieved through the integration of large-scale, 44 
accessible resources such as the UK Biobank (http://www.ukbiobank.ac.uk), teamed with the 45 
openness of diabetes researchers worldwide to share results of previous studies (GWAS results: 46 
http://diagram-consortium.org; exome sequencing and genotyping results: 47 
http://www.type2diabetesgenetics.org/). This has led to the inclusion of up tomore than 74,000 T2D 48 
cases and 820,000 controls  of European-descent,

7, 88
 with an accompanying increase in power.  49 

 50 
 The breadth and depth of genetic variation ascertainment has also dramatically improved. Dense 51 
and accurate genotype imputation using the sequenced haplotypes of the 1000 Genomes

5
 and now  the 52 

Haplotype Reference Consortium
7-98

 has enabled the interrogation of over 25over 10  million genetic 53 
variants, with a ~100-fold increase compared with early GWAS efforts.1 Direct genotyping or 54 
sequencing of common to rare alleles of the exonic areas of the genome has enabled a better 55 
ascertainment of coding variation.

7, 107
 As a consequence, T2D susceptibility variants now range from 56 

0.02-50% in minor allele frequency (MAF), and from 1.04 to 8.05 in per-allele odds ratio.
5-8

 While 57 
most signals are led by common variants with ever smaller effects, new risk alleles include 15 several 58 
that are low-frequency or rare, including two examples of very rare variants with odds ratio ~8.

685-8
 59 

This is consistent with the model of heritability of T2D derived from sequencing experimentswhole-60 
genome sequencing experiments, characterised by a prominent contribution to heritability of common 61 
variation, a small contribution of rare variation and evidence of low selective pressure on 62 
predisposition alleles.

910
 Future meta-analyses of multiple large biobanks are likely to expand the 63 

catalogue of susceptibility variants to some ultra-rare alleles with extreme effect sizes (odds ratios 64 
>10), in addition to finding even more common regulatory alleles with very small effects (odds ratios 65 
<1.01; Figure 1). Direct genotyping and sequencing will be critical to replicate and identify 66 
associations for imputed risk variants that are in the rare allele frequency spectrum (MAF below 67 
0.5%),

11
 specifically if discovered based on imputed genotypes.,,

11
 given the 

11
difficulties ofhigh 68 

quality ation of in accurately imputing these variants even with expanded population reference 69 
panels.

9
  70 

 71 
  Clinical translation of these genomic associations critically depends on our understanding of 72 
underlying mechanisms. Establishing causal variants and variant-gene links has been a critical 73 
challenge in genetic studies. Denser imputation,

5, 8 5, 8
 extended genotyping in coding or metabolic-74 

trait associated regions,
3, 6, 7

 
3, 6, 7

 direct sequencing,
10, 1210

 larger sample size,
6-88

 integration of 75 
extensive genomic and regulatory annotations,

13, 1411, 12
 and progress in analytical fine-mapping 76 

approaches
15, 1613, 14

 have all made this fundamental task easier. For a given association signal, fine-77 
mapping has been able to considerably narrow the size of the genomic region that likely contains the 78 
causal variant as well as the list of plausible causal variants in that windowgenomic region.

5, 7, 8, 145, 8
 79 

78
Of 380 signals amenable to fine-mapping in the latest analysis, 18 could be attributed to a single 80 

causal variant with a posterior probability of association >99%, with over 50 signals at 44 loci 81 
exceeding 80% for the strongest variant.

8
 While most of these likely-causal alleles map to regulatory 82 

regions in pancreatic islets, several overlap enhancers or promoters in other diabetes-related tissues as 83 
adipose, skeletal muscle and liver. Also, there are now a number of likely-causal Identified missense 84 
or nonsense variants with evidence of causal association

7, 8
  are now amenable to more direct in vitro 85 
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and in vivo experimental follow-up.
7, 87, 8

 These represent critical advances in the translation of robust 86 
associations into biological understanding.  87 
 88 
 89 
  90 
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Trans-ethnic discovery efforts  91 
 92 
 AThe global health issue likeburden of T2D with large differences in risk within and between 93 
populations warrants a global genomic approach to study its predisposition. Despite the progress in 94 
the discovery of its genetic basis, T2D is no exception when it comes to the continued 95 
underrepresentation of ethnic diversity in genetic research and discovery efforts.

1715
 Genetic studies in 96 

multiple ethnicities are valuable for several reasons: (a) susceptibility variants may be present at 97 
appreciable allele frequency only in non-Europeancertain  populations, as elegantly shown by the 98 
discovery of associations at the HNF1A (via exome sequencing)

18
 SLC16A11 (via GWAS),

1916
 99 

HNF1A
17

 and IGF2 (via exome genotyping)
2018

  loci in populations of Latin American origin; (b) for 100 
shared susceptibility loci, trans-ethnic studies increase statistical power for new discoveries;

4, 64, 6
 (c) 101 

the diverse linkage disequilibrium patterns across ancestries increase the resolution of fine-mapping 102 
analyses for the identification of causal variants;2, 42, 4 (d) exposure to diverse environments may 103 
reveal the effect of susceptibility variants which are masked in other settings (i.e. gene-environment 104 
interactions).  105 
 106 
 Important evidence has been emerging from GWAS of South Asian, East Asian, Latin American 107 
and African American populations

19, 21-25
 

16, 19-23
 and trans-ethnic discovery efforts;

4, 64, 6
 however, 108 

studies for non-European ancestries remain small in comparison. Collaborative Ongoing trans-ethnic 109 
discovery efforts are now underway under the umbrella of the DIAMANTE consortium with include 110 
over 170,000 T2D cases across 120 studies andwith around 45% of the effective sample size 111 
accounted for by non-European ancestries, currently including African (7%), East Asian (23%), 112 
Hispanic or Latino (6%) and South Asian (9%) ancestry participants (personal communication Prof 113 
Andrew Morris, University of Liverpool). While this represents a substantial advance compared to 114 
previous studies, research in the field remains heavily “Eurocentric”. This will represent a substantial 115 
advance in employing genetic diversity across populations for T2D genetic discovery and will 116 
improve our ability to generalise findings with important implications for drug discovery and clinical 117 
translation for non-European descent populations, many of which are at high risk of T2D. 118 
 119 
 120 
Genetically isolated populations  121 
 122 
 Recent studies have clearly demonstrated the value of studying genetically isolated populations. 123 
In these settings, extended linkage disequilibrium and higher allelic frequencies of deleterious variants 124 
due to greater allelic drift

24
 allowed unique insights into the aetiology of T2D.  deleterious variants 125 

with large phenotypic effect may raise by chance to higher allele frequencies, due to a phenomenon 126 
known as allelic drift.

26
 This makes it easier to identify disease associations for such variants in 127 

isolated compared to admixed populations, in which these variants may not be present or may be very 128 
rare. Such findings can provide insight into the aetiology of T2D that is generalizable outside of the 129 
context of the particular population in which they were discovered. 130 
 131 
 In the Inuit population from Greenland, homozygote carriers of a loss-of-function variant in 132 
TBC1D4 (p.Arg684*) were found to have a ~10 fold higher risk of diabetes, and ~1 standard 133 
deviation higher glucose and insulin at 2 hours following an oral glucose challenge.

2725
 The variant 134 

segregates at high frequency in Inuits (MAF 17%), while being rare or monomorphic in other 135 
populations, and influences risk in a fashion consistent with recessive inheritance.

25
 The mechanism 136 

of action of this variant is also particularly insightful. Risk allele carriers had have lower levels of 137 
GLUT4 in skeletal muscle,

27
 which is critical in the insulin-mediated control of post-prandial 138 

glycaemia(Figure 2). This finding highlights the causal role of insufficient GLUT4-mediated glucose 139 
uptake in muscle for postprandial hyperglycaemia and T2D risk (Figure 2). This corroborates 140 
evidence from the first report of a mutation significantly impairing GLUT4 translocation, identified in 141 
a child with acanthosis nigricans and extreme postprandial hyperinsulinemia carrying a heterozygous 142 
premature stop mutation (p.Arg363*) in TBC1D4.2826  143 
 144 
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 In the same population, exome sequencing has revealed the association of More recently, an 145 
analysis of rare loss-of function variants from exome sequencing in nine Greenlandic family trios 146 
identified a loss-of-function variant in ADCY3 with obesity and diabetes,

29
 a finding supportedthat 147 

decreases gene expression via a splicing defect.
27

 The variant was associated with greater BMI, 148 
abdominal fat, insulin resistance, dyslipidaemia and risk of T2D, with evidence for a recessive 149 
inheritance.

27
 While this variant was not present in non-Greenlandic populations, the authors were 150 

able to identify heterozygous carriers of seven other predicted loss-of-function variants in ADCY3 in 151 
publicly available trans-ethnic T2D exome sequencing studies (URL: 152 
http://www.type2diabetesgenetics.org),

29
 as well as studies of consanguineous in families with 153 

severe obesity.
30

 and demonstrate their enrichment in T2D cases versus controls. A parallel study 154 
identified the gene by sequencing patients with severe obesity.

28
 This demonstrates the success of 155 

prioritizing genomic regions for systematic follow-up in other populations based on strong evidence 156 
from population isolates or extreme phenotypes in family studies. 157 
 158 
 Other examples also highlight convergence of evidence from studies of monogenic disease and 159 
population isolates. An autosomal dominant heterozygous missense mutation in AKT2 was originally 160 
identified as the cause fasting and postprandialof  hyperinsulinemia and diabetes in a family with 161 
severe insulin resistance and partial lipodystrophy.

3129
 A recent exome-array and sequencing study 162 

detected a low-frequency AKT2 coding variant (p.Pro50Thr, MAF 1.1% in Finnish participants, but 163 
not detected in other populations) to be, which was associated with higher fasting insulin levels,

3230
 164 

lower uptake of glucose in insulin-sensitive tissues (shown in a separate recall-by-genotype study)
3331

 165 
and higher T2D risk, further highlighting the role of AKT2 in insulin sensitivity.  166 
 167 
 Another interesting example comes from aIn study of Samoans, a founder population with a high 168 
prevalence of obesity and T2D, in whom a common population-specific (26% allele frequency in 169 
Samoans but extremely rare in other populations) “thrifty” missense variant in CREBRF 170 
(rs373863828, p.Arg457Gln) showed an associationwas associated with substantially higher body 171 
mass index (1.4 kg/m

2
 per allele).

3432
 Interestingly, the adiposity-raising allele was associated with 172 

lower fasting glucose and protection from T2D. In an adipocyte model, overexpression of Arg457Gln 173 
selectively decreased energy use and increased fat storage, in line with its effect on overall body fat, 174 
greater abdominal (waist) and gluterofemoral (hip) fat, potentially highlighting the metabolic benefits 175 
of a greater capacity of fat storage.3533 176 

 177 
 178 

  179 
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6 

 

2. Insights into pathways to diabetes through genomic discovery  180 
 181 
 Genetic studies of diabetes-related intermediate phenotypescontinuous metabolic traits in non-182 
diabetic individuals have emerged as a way to gain mechanistic insights into T2D susceptibility that is 183 
complementary to disease disease-focused discovery GWAS.  184 
 185 
 186 
Glycaemic regulation control and susceptibility to diabetes 187 
 188 
 In the absence of intermediate metabolic traits associations, the interpretation and mechanistic 189 
follow-up of diabetes susceptibility loci would be in some cases impossible. Genetic studies of 190 
glucose and insulin related glycaemic and insulinaemic measures have been defined by the struggle 191 
between sample size and degree of refinement of phenotype ascertainment. Large efforts have focused 192 
on widely-available,  and simple measures as fasting glucose or insulin, and glycated haemoglobin or 193 
insulin,.

36-42
 
34-40

 while smaller ones one
 
In contrast,

 
efforts based on “gold-standard” assays measures 194 

involving frequently-sampled oral glucose tolerance tests or continuous intravenous measurements 195 
that are difficult to obtain at scale have had limited sample sizes.

43-48
 

41-47
 The former approach has 196 

been very successful in the discovery of loci influencing glycaemic traits and insulinaemic levels in 197 
non-diabetic individuals, and helped to identify insulin secretory and has provided large-scale datasets 198 
for the initial characteriseffects as ation of diabetes-associated variantsa major driver of associations 199 
for several of the common diabetes susceptibility loci (Figure 3). 

37, 40, 41, 49
 These studies also 200 

revealed considerable aetiologic heterogeneity in pathways to T2D, highlighting the multifactorial 201 
nature of T2D predisposition.37, 40, 41, 49  . The latter has been used primarily forGold-standard based 202 
studies have provided  in-depth physiologic characterisations of diabetes susceptibility variants 203 
(REFS),

43, 45
 but has also shown promise for as a discovery approach for the identification of novelby 204 

identifying loci (e.g. GRB10,
44

 BCL2,
46

 FAM19A2,
46

 NAT2
47

) that have eluded discovery in much 205 
larger meta-analyses of more widely-available,  but simpler measures or indices (REFS). Both 206 
approaches have been instrumental in understanding the underlying mechanisms of common T2D 207 
predisposition and the genetic influences on circulating glucose levels, insulin secretion and 208 
resistance.

35, 36, 38, 39, 44
  209 

 210 
 Studies of intermediate traits highlighted the that dominant role of impaired insulin secretion is 211 
as a major driver of associations for several of the common diabetes susceptibility loci (Figure 3). 37, 212 
40, 41, 49

 These studies , but also revealed considerable aetiologic heterogeneity.
37, 40, 41, 49

   213 
 35, 38, 39, 48

 Overlaying diabetes susceptibility variants, glycaemic traits and pancreatic islet 214 
regulatory and functional data

13, 14, 50-55
 

11, 12, 49-54
  has provided the foundation for an improved 215 

understanding of mechanisms linking beta-cell glucose sensing and insulin secretion with T2D risk. 216 
High-throughput functional screens of gene silencing in human beta-cell lines are now available 217 
thatand can empower systematic characterisation of the functional impact of novel likely-causal genes 218 
on insulin secretion.

55
 Studies of “gold-standard” measures have highlighted novel and specific 219 

genetic associations.
45, 46

 220 
 221 
 In the absence of intermediate metabolic traits associations, the interpretation and mechanistic 222 
follow-up of diabetes susceptibility loci would be in some cases impossible. A future challenge in this 223 
field will be for intermediate trait studies to stay apace with the rapid inflation increases in sample 224 
size of diabetes association analyses. This , a task that is complicated by the practical difficultiesy of 225 
obtaining fasting samples, let alone more invasive “gold standard” intravenous measurements, in large 226 
biobanks. 227 
 228 
 229 
Excess overall fat and “central” role of peripheral fat 230 
 231 
 Excess fat is the hallmark of overeating and lack of physical exercise and has been a major focus 232 
of genetic research. Large-scale studies of body mass index and related measures have linked genes 233 
highly expressed in the central nervous system with general obesity in different ancestries.

56-58
 

55-57
 234 
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7 

 

This has provided complementary evidence to original discoveries that have revealed the fundamental 235 
role of appetite regulation in monogenic obesity,

5958
 in particular the leptin-melanocortin axis.  236 

 237 
 Observational epidemiology has clearly shown that, for a given level of overall adiposity, the 238 
distribution of fat in the body is associated with susceptibility to insulin resistance, diabetes and its 239 
complications.

60-65
 Genetic discovery approaches integrating multiple insulin -resistance related 240 

phenotypes 
59-63

 However, the complex relationship between regional body fat deposition and 241 
metabolic risk go beyond the simple notion of “apple” and “pear” shaped body. This concept is 242 
reinforced by the aetiologic and phenotypic heterogeneity of partial and generalized lipodystrophies.

64, 243 
65

 Using integrative genomic approaches, we and others have identified 53 genomic regions associated 244 
withIntegrative genomic approaches to the identification of insulin resistance genetic determinants 245 
have identified numerous genetic variants associated with, insulin resistance, increasedhigher risk of 246 
diabetes and coronary disease, but lower fat mass in the peripheral body compartments, in particular 247 
legs and subcutaneous regions.

3533
 These insulin resistance loci were are enriched with genes 248 

harbouring mutations in Mendelian forms of lipodystrophy and were are associated with increased 249 
odds of severe lipodystrophic insulin resistance.

35 33
 In the context of other evidence about the 250 

protective role of fat deposition in peripheral compartments,
45, 66-72

 
44, 66-71

 these results suggest that 251 
reduced mean that being unableability to safely store excess energy in the peripheral regions of the 252 
body may leads to ectopic fat storage and, higher circulating lipids and cardio-metabolic risk in the 253 
general population, similar to clinical manifestations of  as in severe forms of lipodystrophy (Figure 254 
24).  255 
 256 
 Molecular mechanisms underlying this specific aetiology have only started to emerge. These 257 
include the impaired ability to generate new adipocytes and the regulation of gene expression in these 258 
cells, as suggested which is supported by initial experimental evidence around PPARG,

73
 KLF14,

70, 259 
7466

 IRS1, CCDC92, DNAH10 and L3MBTL3.
3569

,
33, 70

 as well as an iImpaired intravascular lipoprotein 260 
lipase (LPL)-mediated lipolysis, 

33
 the mechanism that regulates lipid buffering from the circulation to 261 

peripheral tissues, is also implicated
35

 (Figure 24). Further studies are necessary to understand 262 
whether and how these mechanisms play into the well-established relationship between centripetal fat 263 
distribution and metabolic risk andare necessary to understand how fat deposition in specific body 264 
compartments influences metabolic disease risk of disease in the general population and move beyond 265 
the very simple notion of “apple” and “pear” body shapesd body.  266 
 267 
 268 
Prioritising causal pathways by integrating multi-omic data with clinical outcomes 269 
 270 
 As the sample size of genetic studies has rapidly grown, so has our the ability to measure detailed 271 
molecular features in biological samples using high-throughput technology. Global patterns of 272 
methylation and other epi-genetic features (epigenomics),

7572
 gene expression (transcriptomics),

7673
 273 

proteins (proteomics)
77, 7874, 75

 or metabolites (metabolomics)
79-8176-78

 can now be measured at 274 
epidemiological scale and show enough heritability to enabling e genetic mapping in genome-wide 275 
studies.  276 
 277 
 Genetic studies of “-omics” molecular features can help advance the understanding of the causes 278 
of diabetes (and other complex) diseases in multiple ways, by (a) characterising the phenotypic 279 
consequences of diabetes susceptibility variants identified by GWAS; (b) helping to identify causal 280 
variants and genes at known susceptibility loci; (c) enabling the estimation of causal associations 281 
between molecular traits and disease risk using the principles of Mendelian randomisation.  282 
 283 
 284 
 So far, no studies have systematically followed-up associations of T2D susceptibility variants 285 
with circulating metabolomic or proteomic profiles. Studies overlaying regulatory annotations and 286 
gene expression in pancreatic beta-cells with T2D GWAS results show the value of “-287 
omics”transcriptomic technology analyses for the identification of diabetes susceptibility genes and 288 
mechanistic understanding.

8213
 The increasing availability of similar data on a variety of cell types 289 
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8 

 

(including other relevant metabolic tissues, such as skeletal muscle, adipose, liver) will make it 290 
possible to systematically assess the relevance of different tissues, cell types and tissue-specific 291 
mechanisms in T2D pathophysiology.  292 
 293 
 “Mendelian Randomization” studies using genetics to assess causal associations between 294 
molecular traits and T2D risk have traditionally focused on specific pathways and biomarkers rather 295 
than “-omics” profiles. This is partly the reflections of challenges in applying causal inference 296 
frameworks in the context of correlated and co-regulated molecular exposures such as blood 297 
metabolites or proteins {REF}.

82
 For example, studies of the branched chain amino acid pathway have 298 

provided human genetic evidence of multi-directional causal relationships between their metabolism, 299 
insulin resistance and risk of diabetes,

83
 building upon observations dating back to the 1960s.

84-86
 This 300 

and other metabolomics genetic studies
79-81

  illustrate how variation at key metabolic regulators (e.g. 301 
enzymes) affects a large set of biologically and phenotypically related measures within a pathway. 302 
Hence, inference from associations with diabetes may be restricted to a specific locus of regulatory 303 
importance rather than levels of one or more metabolites. Studies of the epigenetic patterns associated 304 
with obesity and secondarily with T2D have illustrated how, often, that these these complex 305 
molecular patterns are mostly a the consequences rather than the cause of disease processes.

87
  306 

 307 
 308 
   NSeveral new methods that integratinge genomic etic and other “-“-omics”s” data have been 309 
developed to facilitate thesemore sophisticated studies in this field.

88-91
 In principle, these approaches 310 

can be used to systematically study the causal influences of molecular traits on diabetes risk. In 311 
practice, they present a number of challenges that complicate aetiologic inference. 312 
79-83

 313 
 314 
  315 
  316 
 317 
 318 
 While individual multi-omic studies have already been conducted in sample sizes of several 319 
thousands, these deeply phenotyped epidemiological studies are still comparatively small in the 320 
context of genomic research and their relevance of identified loci to metabolic diseases remains 321 
largely unexplored. However, they can serve as models for what might be achieved when technology 322 
and cost developments enable high-throughput multi-omic phenotyping at the scale of large national 323 
Biobanks with hundreds of thousands of participants systematically followed up for a broad range of 324 
diseases.  325 
 326 
Building upon the first wave of discovery, large-scale meta-analyses of GWAS of metabolite profiles, 327 
proteins and epigenetic markers are underway

88
 which will enable the systematic study of causal 328 

relationships between genetic differences in circulating metabolitemolecular patterns and risk of 329 
diabetes and other health outcomes. These investigations may also explain the association of disease 330 
at dozens of T2D associated genetic loci where the underlying molecular mechanisms remain elusive. 331 
Ultimately, the hope is that these multi-layered genetic investigations will reveal novel associations 332 
and make sense of known ones, but the distance between expectations and achievement in this field 333 
remains wide. 334 

 335 

  336 
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3. Genomics and therapeutics in T2D 337 
 338 
 The Chief Medical Officer’s Report “Generation Genome” published in 2017 highlighted key 339 
areas in which genomics can inform disease therapeutics,

89 92
 providing a helpful framework to 340 

describe recent developments of genomics-informed therapeutics in T2D (Table 1). 341 
 342 
New targets 343 
 344 
 The identification of novel drug targets is a major stated objective of T2D genetic studies. The 345 
finding that drug targets supported by human genetics evidence are more likely to succeed in the 346 
selective drug development process

93-95
 

90-92
 and recent success in the development of lipid-347 

loweringnew lipid-lowering drugs following genetic findings from different approaches and sources at 348 
the PCSK9, LPA, APOC3 and ANGPTL3 loci96, 97 93, 94 have exponentially increased interest in this 349 
fieldapproach. 350 
 351 
 Three diabetes-susceptibility  candidate genes identified in early GWAS studies

1
 encode drug 352 

targets for existing glucose lowering therapy (PPARG, thiazolidinediones; KCNJ11/ABCC8, 353 
sulfonylureas), . Mutations in these genes cause severe monogenic diseases characterized by loss of 354 
glycaemic control

95-97
 and common variants at these loci were identified in the first wave of diabetes 355 

GWAS.
1
 This suggestsuggesting that other genes identified through hypothesis-free approaches may 356 

provide usefulbecome new drug targetss, even if common lead variants have small effects.  357 
However, human genetics has played a peripheral role in the development of the most recently 358 
approved classes of glucose-lowering drugs, including dipeptidyl peptidase-4 inhibitors,9898 GLP1R 359 
agonists

9898
 and sodium-glucose co-transporter-2 inhibitors. 9999

 360 
 361 
 With ~250over a hundred genetic loci now robustly associated with diabetes,

8
, why is there still 362 

not a clear “PCSK9-like” example? Generic and therapeutic-area specific obstacles may play a role. 363 
First, several of the causal genes implicated by GWAS have only recently emerged, but it takes 364 
several years for new drugs to enter clinical development. Specifically targeting pancreatic islets, 365 
adipocytes, skeletal myocytes or brain cells, as opposed to circulating proteins is challenging. Safety 366 
concerns have been a limitation in the development of appetite suppressants modifying genetically-367 
validated targets, as illustrated by the failure of first generation agonists of the melanocortin 4 368 
receptor due to on-target side effects.100100 Also, many loci for T2D act via impaired insulin 369 
secretion.

48
 The existence of different classes of approved and widely-used insulin secretagogues may 370 

limit the interest of pharmaceutical companies in new drug development in this area, given the focus 371 
on developing commercially-differentiated products.

9490
 372 

 373 
 Protective loss-of-function variants are particularly interesting for drug development purposes 374 
because they provide insights into the likely consequences of inhibiting a gene product and, if carriers 375 
are healthy, provide someinitial implicit evidence of the likely safety profile of pharmacological 376 
inhibition of the existence of a therapeutic window.

93
 

92
 Sequencing of the early T2D GWAS gene 377 

SLC30A8, encoding a pancreatic islet zinc transporter (ZnT8), has identified rare An interesting 378 
example has been the discovery by sequencing of loss-of-function variants in SLC30A8, encoding a 379 
pancreatic islet zinc transporter (ZnT8), associated with protection against T2D (odds ratio for 380 
carriers, 0.34).

101101
 More recently, an exome array genotyping study  study in populations of Latino 381 

descent identified a protective variant (odds ratio per allele, 0.80) in IGF2 associated with incorrect 382 
splicing of isoform 2 of the gene, suggesting that selectively inhibiting this isoform in relevant tissues 383 
may be therapeutically exploited.

2018
 However, efforts to inhibit ZnT8 or insulin-like growth factor 2 384 

have yet to reach clinical development. The potential therapeutic implications of newly 385 
discoveredrecently reported protective associations of a loss-of-function variant in GPR151 against 386 
obesity, diabetes and coronary artery disease of a loss-of-function variant in GPR151 also deserve 387 
consideration.

102
  388 

 389 
 390 
Genetically-tailored treatment 391 
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 392 
 Diabetes medicine holds some of the most elegant examples of tailoring treatment to the specific 393 
underlying genetic or molecular defect, but all of these relate to monogenic forms of the disease.

103-105
  394 

102-104
 No such examples exist for common susceptibility loci, but this area is certainly understudied.  395 

 396 
 Response to glucose-lowering treatment shows a measurable degree of heritability and evidence 397 
of polygenicity,

106
 indirectly suggesting that combinations of multiple alleles might be able to identify 398 

patients who would be more or less responsive to certain drugs. Opportunities in this field arise from 399 
(a) the definition and characterization of polygenic scores combining common variants that capture a 400 
particular aetiology. Variants with large effects, such as those ; (b) variants with large effect size from 401 
population isolates; (c) or rare variants with very large effects from GWAS in admixed populations.  402 
could also provide suitable basis for pharmacogenetics applications. By studying the functional 403 
consequences of all theoretically possible missense variants in PPARG, Majithia and colleagues 404 
elegantly showed that diabetes-associated mutations in the gene display heterogeneous in vitro 405 
response to thiazolidinediones,

107106, 107 
 which could provide the basis for tailored therapy or dosing in 406 

carriers of these specific alleles, as illustrated in initial case reports.
108

 407 
 408 
 409 
Drug dosing or response 410 
 411 
 The several eEfforts to identify interactions between treatment and genetic background and 412 
T2Din treatment T2D have been the subject of a recent systematic review,

109108
 which revealed the 413 

reliance onhowreporting that research in the field is mostly based on observational studies rather than 414 
randomized controlled trials and candidate gene rather than hypothesis-free approaches, with a few 415 
notable exceptions  discussed below. In a pharmacogenetic clinical trial, Srinivasan et al. found that 416 
TCF7L2 variants associated with T2D influences the acute response to both glipizide and metformin 417 
in people with risk factors for T2D or treatment-naïve T2D patients.

110
 Two Two genome-wide 418 

association studies have identified common genetic variants at the ATM
111

 and 
109

,  and SLC2A2
112110 

 419 
loci associated with response to metformin. The difference in the effect of metformin effect size offor 420 
these variants on HbA1c was estimated at around ~0.15-0.17% of HbA1c per allele, roughly 421 
corresponding to a daily dose of ~250 mg of metformin.

111, 112109, 110110
 A new genome-wide 422 

studydiscovery embedded into a clinical trial found novel associations for common and rare variants 423 
in PRPF31, CPA6, and STAT3 with metformin response.

113
 HoweverWhile these findings are 424 

important for the understanding of genetic susceptibility to drug response, tgenetic testing for these 425 
variants has yet to enter the clinic. The very low price of metformin coupled with the and  widely 426 
adopted pragmatic approach offocus on reaching the HbA1c therapeutic target or the maximum 427 
tolerated dose of this drug are barriers to clinical use of thisese genetic tests.  428 
genetic testing in this setting . entering the clinic. 

112
 429 

 430 
 431 
Drug repurposing 432 
 433 
 If “pharmacomimetic” genetic variants can be used to find new targets, they could theoretically 434 
be used to find new indications for existing drugs. While there , but there are not yet any established 435 
currently no clear examples of genetically-directed repurposing of approved drugs in diabetes, . 436 
Imamura et al. used a systematic bioinformatics approach to identify new T2D drug targets, revealing 437 
potential repurposing opportunities for drugs targeting the gene products of GSK3B and JUN.

23
 438 

Recent findings around lipoprotein lipase may offer an example of genetically-driven extension of the 439 
target population for drugs that are in active development. In late 2016, we reported a gain-of-function 440 
variant (rs328, p.Ser447*) in LPL associated with insulin sensitivity and protection from diabetes and 441 
an independent a loss-of-function variant (rs1801177, p.Asp36Asn) associated with higher diabetes 442 
risk..

3335
  This followed directionally consistent findings for triglyceride levels and heart disease

114
,
111

 443 
supporting leading to the hypothesis that the several agents targeting the LPL pathway that are in 444 
development for the treatment of hypertriglyceridemia

94, 112-11597, 115-118
 could also be valuable as 445 

insulin sensitizing agents. The association with diabetes of rs328 has since been replicated
116119

 and 446 
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the variant or its proxies have emerged in recent GWAS of diabetes,
7, 87, 8

 with consistent findings 447 
published for a loss-of-function in the natural LPL-inhibitor ANGPTL4 (rs116843064, 448 
p.Glu40Lys),

116119
 lending powerful support to this hypothesis.  449 

 450 
 451 
Drug safety 452 
 453 
 Genetic variants have also been used to understand both desired and undesired secondary effects 454 
of pharmacological modulation. For instance, statins are associated with cardiovascular protection, 455 
but with a modest increase in the risk of new-onset diabetes, a pattern observed also for cholesterol 456 
lowering variants in or near Similar to statins and genetic variants at their target HMGCR,.

117, 118120, 121
 457 

aAlso genetic studies of non-statin cholesterol lowering targets cholesterol lowering alleles at 458 
including NPC1L1 (encoding the target of ezetimibe)119122 and PCSK9 (PCSK9 inhibitors)119-121122-124 459 
have shown associations are associated with a lower risk of coronary heart disease, but higher 460 
diabetes risk for cholesterol lowering alleles. While tThis has, suggesteding modest diabetogenic 461 
effects forthat alsothat also non-statin cholesterol lowering agents could be associated with higher 462 
diabetes risk,  might have modest diabetogenic effects. It is important to note thatHowever, recent 463 
randomized controlled trials of ezetimibe

125122
 and PCSK9-inhibitors

126123
  did not find associations 464 

with statistically-significant higher diabetes risk, ruling out largeidentify large or statistically-465 
significant diabetogenic effects. A meta-analysis of trials of PCSK9 inhibitors has revealed 466 
statistically-significant albeit very modest increases in glycemic markers, but no significant 467 
association with diabetes risk.

124
 468 

 469 
 Cardiovascular associations of genetic variants that mimic diabetes medications are particularly 470 
insightful, given the regulatory requirement that glucose-lowering drugs should not be associated with 471 
a higher risk of cardiovascular disease

125127
 and the ongoing paradigm shift from glycemic control to 472 

prevention of complications in diabetes management.
126128

 The concomitant publication of 473 
randomized controlled trials of a glucagon-like peptide receptor 1 (GLP1R) agonists

127, 128129, 130
 and of 474 

genetic studies of a putative gain-of-function variant of GLP1R (rs10305492, p.Ala316Thr),
129131

 both 475 
showing cardio-protective associations for GLP1R activation, illustrates this concept. A similar 476 
approach has shown cardio-protective associations for a functional variant in ABCC8 (rs757110, 477 
p.Ala1369Ser),

130
 

132
 providing genetic insights into the cardiovascular effects of sulfonylureas for 478 

which clinical trials evidence is inconclusive.
131133

 479 

 480 

  481 
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4. Clinical relevance and future outlook  482 
 483 
Genomics in the clinic 484 
 485 
 In addition to diabetes therapeutics, genomics has been proposed to help disease prediction and 486 
diagnosis of common subtypes. The polygenic architecture of T2D dominated by many common 487 
variants with small effects and tagging several different aetiologies has critical implications for both 488 
applications. 489 
 490 
 The level of prediction achieved by common alleles contrasts with patients’ often more 491 
deterministic understanding of what “genetic risk” constitutes, which is informed by examples of 492 
highly penetrant causes of monogenic diseases. Accurate prediction in combination with preventive 493 
lifestyle interventions can be used for targeted primary prevention and avoidance of complications 494 
arising from metabolic dysregulation that is present for years before diagnosis.

132134
 However, existing 495 

diabetes prediction models perform well in the general population and can be used to non-invasively 496 
identify individuals at high risk.

133135
 Earlier prospective studies using up to 65 variants have shown 497 

that polygenic T2D risk scores improve prediction performance only very marginallymodestly when 498 
considered over and above risk factors that can assessed non-invasively, such as age, sex, body mass 499 
index or family history.

134, 135136, 137
 New approaches based on machine learning and complex 500 

statistical modelling such as thosehave been  proposed by Shigemizu etto as improved methods for 501 
genetic prediction.have the potential to  improve on these results. al.

138
 could perhaps further improve 502 

on these results. In the context of a clinically established “minimally” invasive test, Critically, the 503 
existenceavailability of good inexpensive predictors from a patient’s anamnesis or examination (e.g. 504 
family history, BMI) together with clinically established inexpensive tests (i.e.  blood glucose, 505 
HbA1c) that inform both that can inform both diagnosis and future risk prediction and 506 
diagnosisprediction, i.e. blood glucose levels or HbA1c, greatly limitss the scope for introduction 507 
practical use of genetically genetic information forin  Tpredicted risk2D prediction in the clinic 508 
currently has no meaningful clinical contribution to make. Evidence exists that established genetic 509 
variants have the weakest relative effect and add the least to prediction in people with highest levels 510 
of traditional risk factors and hence at highest absolute risk, the exact subgroup of the population in 511 
which preventive interventions and the cost-effectiveness of screening would be greatest.i.e. blood 512 
glucose levels or HbA1c, genetically predicted risk currently has no meaningful clinical contribution 513 
to make. Evidence exists that established genetic variants have the weakest relative effect and add the 514 
least to prediction in people with highest levels of traditional risk factors and hence at highest absolute 515 
risk; the exact subgroup of the population in which preventive interventions and the cost-effectiveness 516 
of screening would be greatest. 517 
 518 
 Diabetes is a multifactorial disease and it has been proposed that genetics could help classify 519 
common disease subtypes. Apart from gestational diabetes and rare, specific Mendelian forms for 520 
which genetics already helps to guide diagnosis and treatment, diabetes is currently crudely classified 521 
into two broad types (> 90% T2D) based on clinical presentation and rapid requirement of 522 
insulin.

139136
 Thomas et al. have provided evidence for the presentation of T1D up to the sixth decade 523 

of life and that a polygenic score specifically associated with type 1 but not type 2 diabetes can help to 524 
rule out T1D in late onset cases.

137140
 But due to the overwhelming predominance of T2D at older 525 

ages, the score’s positive predictive value is too low to confidently identify late onset T1D patients, in 526 
whom initial management may not be optimal if misdiagnosed as T2D.  527 
 528 
 Recent Interesting studiesefforts to classifyaiming to identify T2D subgroups on the basis of 529 
electronic health records, physiological measures or genetic data using data-driven agnostic 530 
approaches are interesting, but their clinical relevance is yet to be demonstratedhave recently 531 
emerged. and perhaps a more nuanced approach to aetiologic classification would better suit the 532 
highly polygenic and multifactorial background of this disease.

138
For instance, using six diabetes-533 

related variablesparameters (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and 534 
homoeostatic model assessment 2 estimatesindices of insulin secretion and β-cell function and insulin 535 
resistance), Ahlqvist et al. have provided evidence of five subtypes of T2D that differ in disease 536 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



13 

 

trajectories and risk of complications.
141

 Using electronic medical records, Li et al. had previously 537 
foundreported evidence of three subtypes,

142
 suggesting that data-driven aetiologic calassifications are 538 

influenced by context and data availability. Investigations using “-omics” measurements may further 539 
extend these initial attempts at a more refined disease categorisation. While the existance of different 540 
aetiologic subtypes in T2D is widely accepted, a robust and definitive classification is missing. In 541 
contrast with approaches aimed at classifying T2D in subgroups and categories, it has been proposed 542 
that a more nuanced approach to aetiologic classification would better suit the highly polygenic and 543 
multifactorial background of this disease.

143
 544 

 545 
Required at diagosis 546 
 547 
Genomic medicine and academia-industry partnerships 548 
 549 
 In the UK, transformative sequencing projects are currently underway. The 100,000 Genome 550 
Project delivers the benefits of genomic medicine to NHS cancer and rare disease patients now and 551 
has so far sequenced over 5055,000 whole genomes (https://www.genomicsengland.co.uk/the-552 
100000-genomes-project/). This project has shown the need for economies of scale in the delivery of 553 
genomic medicine, and NHS England is recommissioning and modernising NHS Genomic Laboratory 554 
Services to develop a first-class genomic service. UK Biobank (http://www.ukbiobank.ac.uk/) has 555 
transformed opportunities for population research in this country and internationally and is entering a 556 
new phase with the announcement to exome-sequence all 500,000 participants by 2019. Such an 557 
accelerated timeline was only possible through major funding by a consortium of five pharmaceutical 558 
companies, brought together by Regeneron Pharmaceuticals, following from their first initiative to 559 
sequence 50,000 participants in collaboration with GSK. In the USA, a partnership between 560 
Regeneron and the Geisinger Health System for the exome sequencing of over 50,000 people has 561 
already shown the value of integrating genetic data and electronic health record datas at a large 562 
scale.

144, 145
 This These is are only one two examples of commercial partners having access to 563 

participant and patient data, including information collected as part of routine clinical care in 564 
electronic health records. The financial benefits of such an effort are something to be considered in 565 
the light of the scientific opportunities that this investment and the generated sequence information 566 
will provide to biomedical researchers worldwide when they gain access, as will be the case for UK 567 
Biobank researchers.  568 
.  569 
 570 
 At the same time, large-scale Biobanks collecting genetic, physiological, longitudinal electronic 571 
health records and other health data have been are being established in many countries around the 572 
word, focusing on clinical hospital populations (e.g. BioVU: https://www.vumc.org/dbmi/biovu), 573 
insurance or care provider populations (e.g. Million Veteran Program: 574 
https://www.research.va.gov/mvp/), or national population cohorts (e.g. China Kadoorie Biobank, 575 
German National Cohort etc). The NIH funded 1 million persons “All of Us” Research Program was, 576 
originally launched as a “new Precision Medicine Initiative to bring us closer to curing diseases like 577 
cancer and diabetes”. ,

146
 It specifically aims to actively recruit ethnic minority populations to help 578 

address the existing bias by including . Whether or not it will be successful in accruing sufficient 579 
numbers required for genetic research of some of the many currently underrepresented groups remains 580 
to be established.   581 
  582 
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Engaging patients in research  583 
 584 
 Genomic sequencing puts the patient at the centre of drug discovery and validation. Close 585 
collaboration between academia, the pharmaceutical and other industries can catalyse the 586 
development of novel therapies for T2D based on genomic insight. To make full use of these 587 
opportunities for patients in this country and elsewhere, the research community needs to engage in a 588 
dialogue with patients and the public about genomic medicine and research and their implications for 589 
uses and misuses of genomic data. 590 
  591 
 Notwithstanding the potential that such partnerships have to improve health research and 592 
outcomes, research commissioned by the Wellcome Trust 593 
(https://wellcome.ac.uk/sites/default/files/public-attitudes-to-commercial-access-to-health-data-594 
wellcome-mar16.pdf) and work delivered by Genomics England as part of their “Genomics 595 
Conversation” (https://www.genomicsengland.co.uk/a-year-of-conversations-about-genomics) have 596 
highlighted that patients’ and the public have concerns about data safety, i.e. non-legitimate uses, and 597 
commercial access to health data, including pharmaceutical and insurance companies.  598 
  599 
 The Chief Medical Officer’s Report “Generation Genome” considered the ethical, social and 600 
legal implications of genomic medicine in this country

9289
 and highlighted the need for highest levels 601 

of data security for storage of identifiable data. However, it is not possible to give an absolute 602 
guarantee of data security and the potential harms arising from criminal data breaches need to be put 603 
in proportion with harms arising from restricting legitimate research uses of health data. For people 604 
living in the UK, universal free access to the National Health System Service means that there is less 605 
reason to fear discrimination with regards health care insurance on the grounds of genetic testing. 606 
While there is currently no explicit legislation, the existing voluntary agreement with insurance 607 
providers also means that an estimated 95% of insurance customers would not need to disclose 608 
genetic test results for example for life assurance, critical illness cover, or income protection, as 609 
disclosure is tied to the policy value. The House of Commons Select Committee on Science and 610 
Technology recently recommended to extendhat the existing voluntary agreement, but  is 611 
extendedclosely monitor but that patient’s views and the experiences in other countries with a legal 612 
prohibition  are closely monitored 613 
(https://publications.parliament.uk/pa/cm201719/cmselect/cmsctech/349/34908.htm#_idTextAnchor0614 
41). 615 
 616 
 617 
Conclusions 618 
 619 
 Advances in genomic research have facilitated rapid progress in clarifying the genetic basis of 620 
T2D and characterising causal variants and variant-gene links. Future opportunities lie in larger-scale 621 
sequencing, discovery across diverse ancestries, studies in genetically isolated populations and in 622 
massive-scale biobanks. Successful development of academia-industry partnerships has brought can 623 
deliver economies of scale, with implications for the future of genomics-focused research.informed 624 
drug development and population research in this field. 625 
  626 
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Review Methods  627 
 628 
We searched Pubmed from inception to March 1

st
 2018 using the following search 629 

strategy: (Diabetes Mellitus, Type 2[MeSH] OR NIDDM OR  Maturity-Onset Diabetes 630 
OR  Diabetes Mellitus, Noninsulin-Dependent OR  Diabetes Mellitus, Adult-Onset OR  631 
Adult-Onset Diabetes Mellitus OR  Diabetes Mellitus, Adult Onset OR  Diabetes 632 
Mellitus, Ketosis-Resistant OR  Diabetes Mellitus, Ketosis Resistant OR  Ketosis -633 
Resistant Diabetes Mellitus OR  Diabetes Mellitus, Maturity-Onset OR  Diabetes 634 
Mellitus, Maturity Onset OR  Diabetes Mellitus, Non Insulin Dependent OR  Diab etes 635 
Mellitus, Non-Insulin-Dependent OR  Non-Insulin-Dependent Diabetes Mellitus OR  636 
Diabetes Mellitus, Noninsulin Dependent OR  Diabetes Mellitus, Slow -Onset OR  637 
Diabetes Mellitus, Slow Onset OR  Slow-Onset Diabetes Mellitus OR  Diabetes 638 
Mellitus, Stable OR  Stable Diabetes Mellitus OR  Diabetes Mellitus, Type II OR  639 
Maturity-Onset Diabetes Mellitus OR  Maturity Onset Diabetes Mellitus OR  MODY 640 
OR  Type 2 Diabetes Mellitus OR  Noninsulin -Dependent Diabetes Mellitus OR  T2D 641 
OR T2DM OR Type 2 Diabetes[tiab] OR Type 2 diabetes mellitus OR diabetes[ti]) AND 642 
(Genome-Wide Association Study[MeSH] OR Association Studies, Genome -Wide OR 643 
Association Study, Genome-Wide OR Genome-Wide Association Studies OR Studies, 644 
Genome-Wide Association OR Study, Genome-Wide Association OR Genome Wide 645 
Association Scan OR Genome Wide Association Studies OR GWA Study OR GWA 646 
Studies OR Studies, GWA OR Study, GWA OR Whole Genome Association Analysis 647 
OR Whole Genome Association Study OR Genome Wide Association Analysis OR 648 
Genome Wide Association Study). To look for new studies published in pre-publication 649 
(non peer-reviewed) form, we searched BioRxiv using the advanced search function 650 
(https://www.biorxiv.org/search): articles posted in the “genetics” or “genomics” 651 
collections, with the key word “diabetes” in the title or abstract, posted between  the 1

st
 652 

of January 2017 and the 9
th

 of April 2018. Theseis literature searches was were 653 
integrated with reference files of the authors and their colleagues, reference lists of 654 
original articles, reviews, and meta-analyses. Given exhaustive reviews on early genetic 655 
association studies by McCarthy

1
 and Morris

2
, amongst others, we focused on recent 656 

developments and articles providing insights into clinical translation of genetic 657 
findings. 658 
  659 
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Tables  

Table 1. Contribution of genetic findings to T2D therapeutics in key areas. 

Area of 

contribution 
Rationale Considerations and examples in T2D research 

New drug target 

identification 

In retrospective analyses, drugs with human genetics support are more 

likely to successfully transition through the drug development pipeline. 

Rapid development of new lipid-lowering drugs with genetic validation 

illustrates potential. 

Loss-of-function variants provide insights into likely efficacy and safety 

of inhibition, while gain-of-function on stimulation of target. 

Genes encoding the targets of glucose lowering agents have been found 

by early GWAS, but new classes of diabetes drugs have not been 

developed as a result of human genetics findings.  

Most loci identified by GWAS have not lead to new drug development.  

Protective loss-of-function variants in SLC30A8 and IGF2 provide 

interesting examples that still await new drug development. 

Mutation specific 

treatment 

Pharmacological interventions may be particularly effective in patients 

with particular underlying aetiology or genetic predisposition. 

Prominent examples are from Mendelian genetics, lack of examples for 

common forms of diabetes with polygenic aetiologic contribution. 

Elegant exemplar from systematic study of all possible missense 

variants of PPARG. 

Opportunities in specific areas have not been fully exploited. 

Drug dosing or 

response 
Drugs may require dose-adjustment according to genetic background. 

Common variants at the ATM and SLC2A2 loci have been robustly 

associated with response to metformin, but genetic testing is not used in 

the clinic. Several studies including a recent trial have proposed an 

effect of TCF7L2 variants on response to glucose-lowering drugs.
108, 109

 

Drug repurposing 
As with new target identification, genetic variants that “mimic” existing 

therapeutic agents may provide the basis for repurposing. 

No  established example of repurposing from other therapeutic areas to 

diabetes. Recent GWAS have explored repurposing opportunities using 

bioinformatics approaches. 

Genetic findings around the LPL pathway may provide basis for 

extension of future indications and target population for emerging lipid-

lowering drugs targeting this pathway. 

Drug safety 

Genetic variants can inform on desired and undesired secondary effects 

of pharmacological modulation of the encoded drug target. 

In diabetes, it is critical to study the cardiovascular safety of existing and 

new agents. 

The example of low-density lipoprotein cholesterol lowering genetic 

variants in genes encoding targets of cholesterol lowering therapy (i.e. 

HMGCR, NPC1L1 and PCSK9) and diabetes risk illustrate power and 

challenges of genetic approaches, given the partial consistency between 

genetic and clinical trial results.  

GLP1R and ABCC8 variants have been used to gain insights into 

cardiovascular safety of existing glucose-lowering drugs. 

Abbreviations: GWAS, genome-wide association studies. 
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Figure Legends 

 

Figure 1. Illustrative representation of genome-wide studies in type 2 diabetes and their power to 
detect certain types of susceptibility alleles for a given sample size. Susceptibility alleles above the 

solid black lines are detectable with a given approach. The graph is informed by the results of actual 

historical
2
 and current

8
 GWAS studies as well as whole-genome and exome sequencing studies that 

provided an empirical model for the genetic architecture of type 2 diabetes.
9 

Exemplar genetic 

susceptibility loci are reported in the figure. Abbreviations: GWAS, genome-wide association studies; OR, 

odds ratio. 

 

 
Figure 2. Aetiologic model for the role of TBC1D4 in GLUT4 translocation and insulin-mediated 

glucose uptake in the skeletal muscle.  

 

Figure 3. Models for normal and impaired insulin secretion. Genetic variants affecting these processes 

result in impaired insulin secretion and higher diabetes risk (right panel), e.g. variants at KCNJ11 and 

ABCC8 identified in genome-wide association studies. 

 

Figure 24. Aetiologic model for the contribution of peripheral adipose storage capacity to metabolic 

and cardiovascular disease and role of adipogenesis and intravascular lipolysis in this process. Some 

of the images have been samples and modified from SMART, Servier Medical Art, (URL: 

https://smart.servier.com/) under Creative Commons Attribution 3.0 Unported License 

(https://creativecommons.org/licenses/by/3.0/). 
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Editor 

 

Editor comment 1 (EC1): “We feel that addressing the reviewers' concerns will 

considerably strengthen the article, particularly those of reviewer 1. Some editors raised 

concerns about the heavy emphasis on findings that are not yet available in peer 

reviewed journals. While it is fine to use data from these sources, we would suggest that 

you use them as you would a conference abstract and clearly signpost when data are 

sourced from the bioRchiv and that these are not peer reviewed. If, in the meantime, the 

articles have been accepted for publication, of course these comments become 

irrelevant. With this in mind, please also add a sentence to your search strategy about 

how you found papers on BioRchiv, was this a systematic search?” 

 

EC1, Authors’ reply: We agree and have now amended our review and references to pre-

publication articles accordingly. Please also see response to reviewer 1, comment 1. 

Following the Editor’s and first reviewer’s concern, we have downplayed the relevance of 

pre-print publications and now state more clearly when we refer to them in the text. One of 

the articles has since been published in Nature Genetics. We now also provide the search 

strategy that was used to systematically identify relevant articles in BioRxiv. 

 

 

EC2: “We wondered if you might also like to comment on recent contributions of 

genetic studies to classifications of disease beyond the monogenic forms of diabetes. 

Notably, Ahlqvist et al was recently published in TLDE and other clustering studies 

might be worth considering. This might fit with pathways rather than being a separate 

section.” 

 

EC2, Authors’ reply: We agree that it is important to cite these approaches. The interesting 

article by Ahlqvist et al. has emerged after submission and we have now discussed and 

referenced this (P 11, L 420 of the new manuscript).  

 

 

EC3: “Although we recognise that for many patients with type 2 diabetes their disease 

and obesity are intrinsically linked, we suggest that you shorten the discussion on 

obesity and lipids to make space for the additional suggestions by from reviewers.” 

 

EC3, Authors’ reply: We have amended the manuscript to accommodate this suggestion (see 

detailed responses below). 

 

 

  

Comments to reviewers
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Reviewer #1 

 

Reviewer 1 comment 1 (R1C1): “this reviewer is surprised that this review is largely 

focused on a paper that has not been yet reviewed and published (only a preprint). In 

this regard the 250 loci for T2D should be cautiously presented especially for a large 

audience of the Lancet. The preprints are made to disseminate new ideas and to 

increase debate quality but this reviewer believes that only published peer reviewed 

papers should be presented in state of art review in particular in high IF journals.” 

 

R1C1, Authors’ reply: We agree with this reviewer and editor that we needed to better 

highlight the non-peer reviewed nature of the BioRxiv articles and have amended the text of 

our article accordingly. One of the two manuscripts by Mahajan et al. has now been 

published in Nature Genetics and we reference it accordingly. The other has been reviewed 

and resubmitted and at this stage results are expected to not change dramatically. Because 

this large-scale meta-analysis a) substantially expands current knowledge, b) has been 

conducted by a team of internationally recognised experts with an outstanding track record in 

this area, and c) uses methodological standards that are accepted and go beyond what is 

expected for a discovery effort such as this one, we do think that reference to these results is 

appropriate and important and increases the timeliness and topicality of this review. 

 

 

R1C2: “The abstract poorly summarizes the paper and should be rewritten. The last 

sentence is pure hope but not based on any robust evidence (that it may work) so far.” 

 

R1C2, Authors’ reply: We have revised the abstract to better reflect the structure of the paper. 

 

 

R1C3: “p 2: The 130 new loci should not be presented as granted. This introduction 

especially the last paragraph is too technical for geneticists only. This reviewer is not 

convinced that outside this small world people would understand what a posterior 

probability means. It is only a copy and paste of the preprint which is not the spirit of 

such a review for a large audience of readers.” 

 

R1C3, Authors’ reply: We have revised the text to improve clarity and facilitate the 

understanding for a general and clinical audience, for instance by removing reference to the 

concept of posterior probability. 

 

 

R1C4: “p3: the first paragraph is confusing as it does not differentiate GWAS analyses 

in various ethnicities and DNA sequencing of T2D genes (or exomes) in specific outbred 

populations. The DIAMANTE project is only a project and should not be presented as 

such in this review.” 

 

R1C4, Authors’ reply: We have revised the text to reflect this suggestion and to more clearly 

distinguish findings arising from exome sequencing versus GWAS studies (P 3, L 83). We 

have trimmed the text referring to DIAMANTE, now mentioned only briefly but still 

highlighting the large scale and multi-ethnic nature of this important effort (P 3, L 92). 
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R1C5: “P 3 last paragraph: the ADCY3 story relates to food intake and obesity first 

and only secondarily to diabetes. The mechanism is likely to be very different from 

other T2D genes. In addition the ADY3 mutations, apart from the Inuit mutation were 

found in consanguineous populations. Of note these consanguinous populations are not 

isolated (such as Greenland Inuits who are 45K people) and constitute 20% of mankind. 

The study of consanguinous families was useful for monogenic diabetes but has not been 

correctly studied so far by GWAS and exome sequencing.” 

 

R1C5, Authors’ reply: We agree with the reviewer that the ADCY3 example is relatively 

peripheral to the theme of this article and have shortened the corresponding text considerably 

(P 3, L 118), while still referring to the parallel publication based on the elegant study of 

consanguineous families. 

 

 

R1C6: “p5: the pathway analysis part is very weak and too general in its findings. Many 

groups work (eg in Oxford, Lille, Malmo) on insulin secretion modulating genes found 

by GWAS and this quest should be presented. BTW the recent controversy on 

melatonin receptor opens the debate about genes directly or indirectly impairing insulin 

secretion (through brain effects) The last paragraph is very self centered on authors' 

own research. This reviewer has nothing against referring to fat deposition GWAS 

genes but it is rather far from T2D physiology (even if there is an overlap that should be 

presented with care). The lipodystrophy hypothesis is very interesting but deserves 

more explanation. Figure 2 is rather biased as seems to pretend that fat deposition is 

THE mechanism by which T2D develops in response to gene variants which is not 

proven. To this reviewer's knowledge recent papers from Gloyn/McCarthy, Bonnefond 

etc were strongly in favor of GWAS associated genes mostly expressed and functional in 

pancreatic beta cells. The fat deposition genes are more relevant to inflammation and 

cardiometabolic diseases. This part of the paper should be fixed.” 

 

R1C6, Authors’ reply: It was not our intention to centre this part too strongly on fat 

deposition and following the reviewer’s suggestion we now present a more balanced view of 

the different pathways contributing to T2D pathophysiology, clarifying that fat deposition is a 

specific contributory mechanism but not the only one (P 5, L 150-208). We have also drawn 

additional figures depicting other relevant mechanisms in T2D aetiology, including impaired 

GLUT4 translocation and insulin secretion, aiming to provide a broader set of relevant 

mechanistic examples (Figures 2-3). Since these latter mechanisms have been discussed 

elsewhere, we defer to the Editor on the final decision of whether these additional figures add 

to the review and should be included in the final version. 

 

 

R1C7: “p7: it is too early to compare the status of the 250 loci (in preprint for half!) and 

PCSK9 with drugs in the market. BTW this part (in particular the last paragraph) 

confuses GWAS analyses (the preprint paper and all others before) and targeted/exome 

sequencing for rare mutations (protective of LoF). Very confusing indeed.” 

 

R1C7, Authors’ reply: Thank you for bringing this to our attention; we have revised the text 

to distinguish the more clearly between GWAS versus sequencing studies (e.g. P 8, L 293-

299). It was not our intention to draw a direct comparison between newly emerging GWAS 

loci and PCSK9. We merely refer to this as a successful example of rapid translation (PCSK9 

variants discovered by gene sequencing that prompted the development of new cholesterol 
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lowering drugs have been discovered around the time of first GWAS of T2D), because this 

supports the value of genomic discovery approaches and precision medicine more generally. 

 

 

R1C8: “p8: drug response and safety: the paper forgot the most important papers in 

the field that are related to metformin complications (Pearson's papers). This reviewer 

is obliged to say that according to the title the paper is not on lipids, fat and PCSK9 but 

on diabetes genes !” 

 

R1C8, Authors’ reply: We completely agree about the importance of Prof Pearson’s papers 

on metformin and these are now cited and discussed (P 9, L 326-337). We also trimmed the 

discussion of examples of lipid-lowering drugs to stay closer to the main focus of the article 

(P 9, L 364). 

 

 

R1C9: “p10: genomics in the clinic: authors have a negative view of GWAS outcomes in 

clinic. It is their right although recent evidence from genomic Risk Scores show hope 

that soon absolute risk may be assessed by genetics. Authors totally ignore prospective 

studies of incident risk (means not in case control studies) that have illustrated the 

interest and limits of SNPs in the prediction of incident cases (see Swedish, French and 

US studies). In addition on top of genetics metabonomics offers strong hope for accurate 

prediction of incident cases (which BTW is THE question in clinic). See UK Lolipop, 

French Desir, Dutch studies...” 

 

R1C9, Authors’ reply: This comment highlights the need to clarify our position and avoid 

any misunderstandings. Our comments on the relevance of GWAS findings for clinical 

prediction are meant to solely apply to the example of T2D, for which good, clinically 

accepted and used non-invasive and invasive predictive markers (i.e. HbA1c or glucose) 

already exist. These comments can and should not be applied to other outcomes of equally 

high clinical importance that are currently poorly predicted and/ or for which genetic 

prediction may play an important role even in the near future.  

In the light of the reviewer’s comment we have now revised this section (P 11, L 393) 

to also make it clearer that results are not based on case-control but prospective evidence 

(cohort and case-cohort). 

Subgroups of the population where existing prediction algorithms work less well, and 

genetics adds relatively more (e.g. leaner and/ or younger individuals) are at low absolute risk 

and hence from a population or universal clinical provider perspective, the possible benefits 

of testing for genotypes or other markers in these groups has to be weighed against their low 

absolute risk. We have modified the text to reflect these considerations (P 11, L 407).  

 

 

R1C10: “The fact that Regeneron/GSK contribute to sequence patients genome does not 

mean that it will provide key insight on T2D genetics. Indeed their interest is more on 

LoF "protective " mutations in important genes found in general population modifying 

important phenotypes (lipids, glucose...). Thus wait and see...” 

 

R1C10, Authors’ reply: We accept the views of the reviewer and have amended that section 

accordingly (P 11, L 436-453). As reviewer 3 highlights, “genomic studies for the 

identification of relevant genomic regions and validation of new therapeutic targets show 

tremendous promise for transformative clinical impact“. As academia-industry partnerships 
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delivering large-scale genomics are becoming more prevalent, the challenges and 

opportunities arising from such efforts for T2D deserve some mention in our view.  
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Reviewer #3:  

 

Reviewer 3 comment 1 (R3C1): “The authors reviewed the literature and have 

discussed several points concerning the hereditary basis of type 2 diabetes, pathways 

involved in diabetes identified through genomic studies, the genomics and therapeutics 

of type 2 diabetes, and the clinical relevance and future outlook. Genome-wide 

association studies have implicated many genomic regions, and there has been 

considerable advancement in the understanding of the mechanisms underlying these 

associations. Genomic studies for the identification of relevant genomic regions and 

validation of new therapeutic targets show tremendous promise for transformative 

clinical impact. Therefore, the authors focused on recent developments and offer 

insights into clinical translation of genetic findings.” 

 

R3C1, Authors’ reply: We are grateful to the reviewer for thoroughly reviewing our work and 

providing important suggestions for improvements. 

 

 

R3C2: “Major comments: Page 5, lines 24-43. 

Shungin et al. identified several loci associated with body fat distribution with stronger 

effects in one sex than the other (Nature. 2015;518(7538):187-96). This finding should be 

mentioned because variants with sex-specific effects are interesting and important for 

considering the genetic basis of diabetes.” 

 

R3C2, Authors’ reply: We agree and now cite this relevant article in the new version of the 

manuscript (P 5, L 191). However, we had to considerably shorten this section and the 

discussion of body fat distribution following the requests of the editor and other reviewers, so 

were unable to discuss details of any sex specific effects. 

 

 

R3C3: “Page 8, lines 9-18. 

The limitations of pharmacogenetics study design should be addressed. Recently, 

Srinivasan et al. conducted a novel prospective pharmacogenetic clinical trial (SUGAR-

MGH), which revealed that a TCF7L2 variant associated with T2D influences the acute 

response to both glipizide and metformin in non-diabetic participants (Diabetes Care. 

2018;41(3):554-61). The study design of SUGAR-MGH is very important because it is 

free of the uncontrolled nature of retrospective clinical data sets. The authors should 

describe variants at not only ATM and SLC2A2 but also TCF7L2 loci that were 

associated with response to diabetes drugs in Table 1.” 

 

R3C3, Authors’ reply: Thank you for raising this; we have cited this interesting work and 

also added TCF7L2 to the table (P 9, L 329). 

 

 

R3C4: “Page 8, lines 19-32. 

A systematic bioinformatics approach would be useful for repurposing of approved 

drugs in diabetes. For example, Imamura et al. identified two genes, GSK3<beta> and 

JUN, whose products directly interact with those of multiple biological T2D 

susceptibility genes, using a bioinformatics approach (Nature communications. 

2016;7:10531). While therapeutic drugs for diseases other than diabetes targeting 
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GSK3<beta> and JUN were under clinical trials, these compounds could also be 

potential treatments for T2D. The authors may want to cite this article.” 

 

R3C4, Authors’ reply: We thank the reviewer for this suggestion and now cite the article as a 

possible way forward in genetic-evidence driven re-purposing (P 9, L 347). 

 

 

R3C5: “Minor comments: 

Figure 1. 

The authors should clarify the meaning of the number next to each given approach (e.g. 

~10,000s). Does it indicate the total number of variants genotyped?” 

 

R3C5, Authors’ reply: We have modified the figure to clarify that numbers refer to the 

sample size (see Figure 1). 

 

 

R3C6: “Page 10, lines 7-21. 

Regarding diabetes prediction models, the authors should mention not only the clinical 

utility of a genetic risk score but also machine learning applications. For example, 

Shigemizu et al. developed a predictive model for T2D that consisted of nine SNPs 

selected using a Bayes Factor and lasso method with three clinical risk factors (age, 

gender, and BMI) and conducted a two-stage study (training and test sets) in a 

prospective cohort in Japan. The predictive model exhibited a 1.5% increase in the 

AUC over the clinical risk factors alone (PLoS One. 2014;9(3):e92549).” 

 

R3C6, Authors’ reply: This is an interesting point and we have modified the text to reference 

advanced statistical modelling approaches for improved prediction (P 11, L 402). 
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Reviewer #4:  

 

Reviewer 4 comment 1 (R4C1): “I really liked this review. I think the last two sections 

in particular focus on the translational/clinical side of T2D genetics in a way I haven't 

seen too often before. Below are hopefully constructive comments:” 

 

R4C1, Authors’ reply: We would like to thank the reviewer for assessing our work so 

carefully and for the helpful and constructive comments. We have made changes to the 

manuscript in response to these suggestions and feel that the manuscript has greatly improved 

as a result. 

 

 

R4C2: “Section 1 (global view) 

In general I found the first two sections to need the most work. They seemed relatively 

unfocused and not necessarily making an argument leading up to the last two sections, 

which I felt to be quite strong. The shift in fact was quite abrupt. Maybe the two 

sections could state the overriding hypothesis of the review (which to me is how T2D 

genomics can impact translational and clinical research), frame the findings in the first 

two sections as such, and use their results as a foundation to support the major 

conclusions (e.g., to evaluate drug targets you need a lot of data and quantitative traits; 

for genetic risk prediction you need a lot of multi-ethnic data). I realize this is high level 

so below I'll call out specific areas that struck me.” 

 

R4C2, Authors’ reply: Thank you for this suggestion; we have re-structured the first two 

sections in light of these suggestions and provide more detailed responses to related changes 

in our answers to the following comments below.  

 

 

R4C3: “Very early on in Section 1 the authors state the reported (strong) ORs and 

lower frequencies from the recent T2D GWAS as evidence of much higher effect 

variants. It's important to mention (in a review like this) that these variants are of a 

different ilk than those previously reported: they haven't been validated in individual 

cohorts or even directly genotyped to make sure the imputation is accurate. 

Additionally, with the extreme case/control imbalance rare variant test statistics may 

not be well calibrated; a sentence suggesting this caution would be appropriate 

(particularly since future studies are going to only exacerbate this issue). Related to the 

first comment, I think at some point imputation quality should be addressed for these 

newer studies of much rarer variants.” 

 

R4C3, Authors’ reply: We agree with these insights and have now added these points and 

downplayed our original comments about the newly identified rare variants (P 2, L 56).  

 

 

R4C4: “The genetic isolate section seemed a little unfocused. It was framed as helping 

address the global basis of T2D, but then it goes into detail on three genes, the 

mechanism of which isn't really related to populations in which they are discovered. 

Mechanistic understanding of genes could come from variants discovered in any 

population; the fact that these variants were discovered in isolates is kind of orthogonal 

to the main content. The point of why isolates are useful is that large effect variants may 

(by chance) rise to high frequency in the isolate, which in some ways means that 
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individual high effect variants are better powered for detection in isolates. But this 

point doesn't come through with the micro focus on gene mechanisms. I personally 

think the gene mechanisms are well-covered in countless reviews and this one could 

focus more on why isolates can help the global epidemic of T2D. Restating this more 

broadly, the "global view" in the title doesn't really come through” 

 

R4C4, Authors’ reply: We agree with this comment and try to now provide a higher level 

“global view” by giving more prominence to the discussion of the overall utility, advantages 

and insights provided by studying population isolates (P 3, L 102). We have trimmed the 

discussion of specific mechanisms accordingly. 

 

 

R4C5: “Is it worth mentioning the T2D knowledge portal, which is funded by five 

pharmaceutical companies and the NIH/FNIH Accelerating Medicines Partnership? 

T2D has a unique commitment to data sharing.” 

 

R4C5, Authors’ reply: We completely agree and we now reference the T2D Knowledge 

Portal as a very important resource for T2D researchers (P 2, L 38). 

 

 

R4C6: “How were the lines drawn in Figure 1? Is there a reason the bottom curve has a 

sharp point at 0.01%? If not, I would make it smooth. At minimum, some justification 

for this figure beyond pure heuristics would be useful (e.g., show actual discovered 

MAF/OR combinations)?” 

 

R4C6, Authors’ reply: We have drawn the figure using Microsoft pptx. Figures will be 

redrawn and improved by the Lancet’s team for the final version. Following this comment, 

we have now added exemplar genetic variants to the graph and made it clear that the graph 

follows the empirical results of previous GWAS and sequencing studies (see Figure 1 and its 

legend). 

 

 

R4C7: “Section 2 

The idea about the trade-off between sample size and degree of refinement of phenotype 

ascertainment was very interesting and something I had not seen clearly articulated 

before. It wasn't really developed though. This whole section was extremely vague and 

didn't tell me a whole lot. I would love to see it refocused on the first sentence, and to 

tell me how different studies had chosen one of these trade-offs rather than the other, 

and what each could tell us about T2D. When do you do one and not the other? What 

findings were from one but not the other?” 

 

R4C7, Authors’ reply: We thank the reviewer for this helpful comment and have amended 

the new version accordingly (P 5, L 152-167).  

 

 

R4C8: “Should PPARG be mentioned in the second subsection?” 

 

R4C8, Authors’ reply: We agree and have now added PPARG to this section (P 6, L 203). 
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R4C9: “The multi-omic data section I didn't really follow at all. It sets up a bunch of 

technologies, but then there are two paragraphs on metabolomics based discovery. 

Where are the other technologies? How did these prioritize pathways? A nested 

association is not a pathway. I think there is a case to be made that multi-omics is a 

major future direction, but this section seems to only cover metabolomics. In general, I 

found this section to be really weak. I think the two ideas (trade-offs in how secondary 

traits are studied, multiomics) are interesting to address, but they are not (at least upon 

my reading) actually addressed.” 

 

R4C9, Authors’ reply: We have amended the section to now include a wider and more 

structured discussion of “-omics” approaches (P 6, L 211-254).  

 

 

R4C10: “Should Mendelian randomization be covered, particularly given the clinical 

bent of the paper?” 

 

R4C10, Authors’ reply: While we agree that genetic approaches to causality are an interesting 

topic but given that this has been reviewed and covered extensively elsewhere, we think that 

this is beyond the scope of this review. However, we have now included clear reference and a 

brief statement to bring this topic to an interested reader’s attention (P 6, L 229). 

 

 

R4C11: “I would downplay the pathway/mechanism findings in general. They are 

overcovered by every other T2D review, and pruning them could focus this on the 

interesting ideas it broaches that have not been covered elsewhere.” 

 

R4C11, Authors’ reply: We have shortened the sections about specific mechanisms to be able 

to expand the topics that have not been extensively covered by previous reviews as suggested 

(e.g. section on ADCY3, P3 L 118). 

 

 

R4C12: “Sections 3 & 4 

I really liked these sections, as mentioned above. My only suggestion is to refocus 

sections 1 and 2 so that they set up this section even more. I don't have any major 

comments here.” 

 

R4C12, Authors’ reply: We thank the reviewer for these supportive comments. 

 

 

R4C13: “My only minor comment (maybe a question): is this review supposed to only 

cover genomics of T2D in the UK? All of the future data mentioned is in UK, and 

similar US efforts like the MVP and All of Us are not mentioned. The explicit caveat 

that UK citizens have less to worry about with respect to discrimination made me think 

perhaps it is UK focused, but given that the title of the first section is "A global view of 

T2D genomics" the focus on the UK seems odd.” 

 

R4C13, Authors’ reply: We agree and present a more balanced discussion of these topics in 

the new version, including specific reference to the MVP and All of Us efforts (P 12, L 455-

463). 

 


