130 research outputs found

    Thermodynamic equilibrium calculations in cementitious systems

    Get PDF
    This review paper aims at giving an overview of the different applications of thermodynamic equilibrium calculations in cementitious systems. They can help us to understand on a chemical level the consequences of different factors such as cement composition, hydration, leaching, or temperature on the composition and the properties of a hydrated cementitious system. Equilibrium calculations have been used successfully to compute the stable phase assemblages based on the solution composition as well as to model the stable phase assemblage in completely hydrated cements and thus to asses the influence of the chemical composition on the hydrate assemblage. Thermodynamic calculations can also, in combination with a dissolution model, be used to follow the changes during hydration or, in combination with transport models, to calculate the interactions of cementitious systems with the environment. In all these quite different applications, thermodynamic equilibrium calculations have been a valuable addition to experimental studies deepening our understanding of the processes that govern cementitious systems and interpreting experimental observations. It should be carried in mind that precipitation and dissolution processes can be slow so that thermodynamic equilibrium may not be reached; an approach that couples thermodynamics and kinetics would be preferable. However, as many of the kinetic data are not (yet) available, it is important to verify the results of thermodynamic calculations with appropriate experiments. Thermodynamic equilibrium calculations in its different forms have been applied mainly to Portland cement systems. The approach, however, is equally valid for blended systems or for cementitious systems based on supplementary cementitious materials and is expected to further the development of new cementitious materials and blend

    NEA TDBIV project : preparation of a state-of-the-art report on thermodynamic data for cement

    No full text
    The program of work of the fourth phase of the OECD NEA Thermochemical Database Project (TDB-IV) contemplates a line of activity on the preparation of a state of the art report on cements. The present work aims at presenting the project, its aims and its limits

    Speciation of iron(II/III) at the iron-cement interface: a review.

    Get PDF
    Steel is used as reinforcement in construction materials and it is also an important component of cement-stabilized waste materials to be disposed of in deep geological repositories for radioactive waste. Steel corrosion releases dissolved Fe(II/III) species that can form corrosion products on the steel surface or interact with cementitious materials at the iron-cement interface. The thermodynamically stable Fe species in the given conditions may diffuse further into the adjacent, porous cement matrix and react with individual cement phases. Thus, the retention of Fe(II/III) by the hydrate assemblage of cement paste is an important process affecting the diffusive transport of the aqueous species into the cementitious materials. The diffusion of aqueous Fe(II/III) species from the steel surface into the adjacent cementitious material coupled with the kinetically controlled formation of iron corrosion products, such as by Fe(II) oxidation, decisively determines the extension of the corrosion front. This review summarises the state-of-the art knowledge on the interaction of ferrous and ferric iron with cement phases based on a literature survey and provides new insights and proper perspectives for future study on interaction systems of iron and cement

    Coupling thermodynamics and digital image models to simulate hydration and microstructure development of portland cement pastes

    Get PDF
    Equilibrium thermodynamic calculations, coupled to a kinetic model for the dissolution rates of clinker phases, have been used in recent years to predict time-dependent phase assemblages in hydrating cement pastes. We couple this approach to a 3D microstructure model to simulate microstructure development during the hydration of ordinary portland cement pastes. The combined simulation tool uses a collection of growth/dissolution rules to approximate a range of growth modes at material interfaces, including growth by weighted mean curvature and growth by random aggregation. The growth rules are formulated for each type of material interface to capture the kinds of cement paste microstructure changes that are typically observed. We make quantitative comparisons between simulated and observed microstructures for two ordinary portland cements, including bulk phase analyses and two-point correlation functions for various phases. The method is also shown to provide accurate predictions of the heats of hydration and 28 day mortar cube compressive strengths. The method is an attractive alternative to the cement hydration and microstructure model CEMHYD3D because it has a better thermodynamic and kinetic basis and because it is transferable to other cementitious material system

    Deterioration of mortar bars immersed in magnesium containing sulfate solutions

    Get PDF
    Mortars prepared with a CEM I and a CEM III/B binder were investigated in different magnesium sulfate solutions. The main deterioration mechanism for the CEM I was expansion, while surface erosion was dominant for CEM III/B. The presence of sodium, potassium and calcium in a magnesium sulfate solution led to less expansion and less surface deterioration for both, CEM I and CEM III/B, than which was observed in solutions containing only sodium or magnesium sulfate. The presence of a mixture of different cations seems to lower both the surface deterioration and the expansion and might explain why sulfate attack damages are not as frequent in the field as in laboratory tests. Sulfate binding before cracking/expansion is similar in the presence of all different solutions investigated, indicating that the speed of sulfate ingress and the amount of bound sulphate depends during the first months mainly on the binde

    Thermodynamic modeling of sulfate-resistant cements with addition of barium compounds

    Get PDF
    ComunicaciĂłn presentada en el International Congress Science and Technology for the Conservation of Cultural Heritage (TechnoHeritage), celebrado en Santiago de compostela del 2 al 5 de octubre de 2012.Sulfate attack by ground waters, soils, etc. is one of the threats to the built heritage in concrete. This study validated through thermodynamic modeling with GEMS geochemical code a new sulfate-resistant formulation based on the addition of BaCO3 and BaO to ordinary Portland cement (OPC), which could be used to replace weathered concrete. The thermodynamic calculations pointed out that Ba ions were able to form an insoluble salt, barite (BaSO4) with the dissolved sulfate which inhibited the formation of ettringite, the latter oc- curred when the concentrations of BaCO3 and BaO were ≄ 6 and ≄ 4 wt.%, respectively. The results of a simulated sulfate a ttack revealed that ettringite precipitated upon ingression of ≄46 ml of a Na2SO4 solution (44 wt.%) in OPC blends with 20 wt.% of BaCO3; whereas with 20 wt.% of BaO, the sulfate that precipitated besides ba rite was monosulfoaluminate when sulfate solution was ≄40 ml (tested up to 52 ml).Funding from the Spanish Ministry of Education and Science (Project CONSOLIDER CSD2007-00058) and the Regional Government of Madrid (Geomaterials Programme) is gratefully acknowledged.Peer Reviewe

    Composition of C-S-H in pastes with increasing levels of silica fume addition

    Get PDF
    New results show that the microstructure development of cement–silica fume blends is very different from plain cement. Portlandite (CH) tends to precipitate as platelets and even around clinker grains as “CH rims” and is consumed by pozzolanic reaction with silica fume. The Ca/Si ratio in the inner product (IP) C–S–H decreases as CH is consumed to reach Ca/Si ≈ 1.40–1.50 at the point when CH has disappeared, and then drops down to 1.00 in absence of CH. At later ages, the IP C–S–H is often composed of two distinct regions. The outermost (formed first) consists of originally high Ca/Si C–S–H, which Ca/Si slowly decreases. The second (formed later) forms only once CH is no longer present and has a lower Ca/Si. Between 10 and 38 °C, the main effect of increasing the temperature is to accelerate the reaction of cement and increase the reactivity of silica fume. The changes in Ca and Si in the pore solution of similar systems suggest that the composition of the solution and the solids reciprocally influence each other

    TC 238-SCM: hydration and microstructure of concrete with SCMs State of the art on methods to determine degree of reaction of SCMs

    Get PDF
    This paper is the work of working group 2 of the RILEM TC 238-SCM. Its purpose is to review methods to estimate the degree of reaction of supplementary cementitious materials in blended (or composite) cement pastes. We do not consider explicitly the wider issues of the influence of SCMs on hydration kinetics, nor the measurement of degree of reaction in alkali activated materials. The paper categorises the techniques into direct methods and indirect methods. Direct methods attempt to measure directly the amount of SCM remaining at a certain time, such as selective dissolution, microscopy combined with image analysis, and NMR. Indirect methods infer the amount of SCM reacted by back calculation from some other measured quantity, such as calcium hydroxide consumption. The paper first discusses the different techniques, how they operate and the advantages and limitations along with more details of case studies on different SCMs. In the second part we summarise the most suitable approaches for each SCM, and the paper finishes with conclusions and perspectives for future work
    • 

    corecore