42 research outputs found

    Refining patient selection for next-generation immunotherapeutic early-phase clinical trials with a novel and externally validated prognostic nomogram

    Get PDF
    IntroductionIdentifying which patient may benefit from immunotherapeutic early-phase clinical trials is an unmet need in drug development. Among several proposed prognostic scores, none has been validated in patients receiving immunomodulating agents (IMAs)-based combinations.Patients and methodsWe retrospectively collected data of 208 patients enrolled in early-phase clinical trials investigating IMAs at our Institution, correlating clinical and blood-based variables with overall survival (OS). A retrospective cohort of 50 patients treated with IMAs at Imperial College (Hammersmith Hospital, London, UK) was used for validation.ResultsA total of 173 subjects were selected for analyses. Most frequent cancers included non-small cell lung cancer (26%), hepatocellular carcinoma (21.5%) and glioblastoma (13%). Multivariate analysis (MVA) revealed 3 factors to be independently associated with OS: line of treatment (second and third vs subsequent, HR 0.61, 95% CI 0.40-0.93, p 0.02), serum albumin as continuous variable (HR 0.57, 95% CI 0.36–0.91, p 0.02) and number of metastatic sites (<3 vs ≥3, HR 0.68, 95% CI 0.48-0.98, p 0.04). After splitting albumin value at the median (3.84 g/dL), a score system was capable of stratifying patients in 3 groups with significantly different OS (p<0.0001). Relationship with OS reproduced in the external cohort (p=0.008). Then, from these factors we built a nomogram.ConclusionsPrior treatment, serum albumin and number of metastatic sites are readily available prognostic traits in patients with advanced malignancies participating into immunotherapy early-phase trials. Combination of these factors can optimize patient selection at study enrollment, maximizing therapeutic intent

    MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients

    Get PDF
    Patients with primary HER2-positive breast cancer benefit from HER2-targeted therapies. Nevertheless, a significant proportion of these patients die of disease progression due to mechanisms of drug resistance. MicroRNAs (miRNAs) are emerging as critical core regulators of drug resistance that act by modulating the epithelial- to-mesenchymal transition (EMT) and cancer-related immune responses. In this study, we investigated the association between the expression of a specific subset of 14 miRNAs involved in EMT processes and immune functions and the response to neoadjuvant trastuzumab and chemotherapy in 52 patients with HER2-overexpressing breast tumors. The expression of only a single miRNA, miR-21, was significantly associated with residual disease (p = 0.030) and increased after trastuzumab-chemotherapy (p = 0.012). A target prediction analysis coupled with in vitro and in vivo validations revealed that miR-21 levels inversely correlated with the expression of PTEN (rs = −0.502; p = 0.005) and PDCD4 (rs = −0.426; p = 0.019), which differentially influenced the drug sensitivity of HER2-positive breast cancer cells. However, PTEN expression was only marginally associated with residual disease. We further demonstrated that miR-21 was able to affect the response to both trastuzumab and chemotherapy, triggering an IL-6/STAT3/NF-κB-mediated signaling loop and activating the PI3K pathway. Our findings support the ability of miR-21 signaling to sustain EMT and shape the tumor immune microenvironment in HER2-positive breast cancer. Collectively, these data provide a rationale for using miR-21 expression as a biomarker to select trastuzumab-chemotherapy-resistant HER2-positive breast cancer patients who may benefit from treatments containing PI3K inhibitors or immunomodulatory drugs

    Current and Emerging Treatment Options for Patients with Relapsed Myeloma

    Get PDF
    Multiple myeloma (MM) is a neoplastic disorder. It results from proliferation of clonal plasma cells in bone marrow with production of monoclonal proteins, which are detectable in serum or urine. MM is clinically characterized by destructive bone lesions, anemia, hypercalcemia and renal insufficiency. Its prognosis is severe, with a median survival after diagnosis of approximately 3 years due to frequent relapses. Treatments for patients with relapsed/refractory MM include hematopoietic cell transplantation, a rechallenge using a previous chemotherapy regimen or a trial of a new regimen. The introduction of new drugs such as thalidomide, lenalidomide and bortezomib has markedly improved MM outcomes. When relapse occurs, the clinician's challenge is to select the optimal treatment for each patient while balancing efficacy and toxicity. Patients with indolent relapse can be first treated with a 2-drug or a 3-drug combination. Patients with more aggressive relapse often require therapy with a combination of multiple active agents. Autologous stem cell transplantation should be considered as salvage therapy at first relapse for patients who have cryopreserved stem cells early in the disease course. The aim of this review is to provide an overview on the pharmacological and molecular action of treatments used for patients with relapsed/refractory multiple myeloma

    Brain metastases and next-generation anticancer therapies:a survival guide for clinicians

    No full text
    Historically, patients with brain metastases (BMs) have been characterized by few systemic treatment options and poor prognosis. The recent introduction of next-generation anticancer therapies such as molecular targeted agents and immunotherapy have revolutionized the clinical decision-making process of this sub-population, posing new challenges to physicians. In this review, current evidence for the use of checkpoint inhibitors and targeted therapies in patients with BMs are discussed, with a focus on lung cancer, breast cancer, melanoma and renal cell carcinoma, providing suggestions and potential workflows for daily clinical practice. Several other on-going and future challenges, such as clinical trials design, ways to improve CNS penetration of novel drugs and unique molecular characteristics of BMs, are also discussed. The aim is producing an updated and easy-to-read guide for physicians, to improve decision-making in clinical practice.</p

    Precision Oncology in Lower-Grade Gliomas: Promises and Pitfalls of Therapeutic Strategies Targeting IDH-Mutations

    No full text
    Mutations in isocitrate dehydrogenase (IDH)1 and its homolog IDH2 are considered an earliest “driver” genetic event during gliomagenesis, representing now the molecular hallmark of lower-grade gliomas (LGGs). IDH-mutated genes encode for a neomorphic enzyme that converts α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate (2-HG), which accumulates to high concentrations and alters cellular epigenetics and metabolism. Targeting IDH mutations is the first attempt to apply “precision oncology” in LGGs. Two distinct strategies have been proposed so far and are under intense clinical investigation: (i) reducing the amount of intratumoral 2-HG by directly blocking the function of mutant IDH enzyme; (ii) exploiting the selective epigenetic and metabolic cellular vulnerabilities as a consequence of 2-HG accumulation. The present review describes the physiopathological mechanisms by which IDH mutations lead to tumorigenesis, discussing their prognostic significance and pivotal role in the gliomas diagnostic classification system. We critically review preclinical evidence and available clinical data of first-generation mutant-selective IDH inhibitors and novel IDH-targeted vaccines. Finally, as an alternative and attractive approach, we present the rationale to take advantage of selective 2-HG related epigenetic and metabolic weaknesses. The results of ongoing clinical trials will help us clarify the complex scenario of IDH-targeted therapeutic approaches in gliomas

    An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers.

    No full text
    Stromal tumor-infiltrating lymphocytes (TILs) are a robust prognostic factor in triple-negative breast cancer (TNBC). However, the clinical significance of TILs may be influenced by the complex landscape of the tumor immune microenvironment. In this study, we aimed to evaluate the composition and the functionality of lymphocytic infiltration and checkpoint receptors in TNBC.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients

    No full text
    Patients with primary HER2-positive breast cancer benefit from HER2-targeted therapies. Nevertheless, a significant proportion of these patients die of disease progression due to mechanisms of drug resistance. MicroRNAs (miRNAs) are emerging as critical core regulators of drug resistance that act by modulating the epithelial- to-mesenchymal transition (EMT) and cancer-related immune responses. In this study, we investigated the association between the expression of a specific subset of 14 miRNAs involved in EMT processes and immune functions and the response to neoadjuvant trastuzumab and chemotherapy in 52 patients with HER2-overexpressing breast tumors. The expression of only a single miRNA, miR-21, was significantly associated with residual disease (p = 0.030) and increased after trastuzumab-chemotherapy (p = 0.012). A target prediction analysis coupled with in vitro and in vivo validations revealed that miR-21 levels inversely correlated with the expression of PTEN (rs = −0.502; p = 0.005) and PDCD4 (rs = −0.426; p = 0.019), which differentially influenced the drug sensitivity of HER2-positive breast cancer cells. However, PTEN expression was only marginally associated with residual disease. We further demonstrated that miR-21 was able to affect the response to both trastuzumab and chemotherapy, triggering an IL-6/STAT3/NF-κB-mediated signaling loop and activating the PI3K pathway. Our findings support the ability of miR-21 signaling to sustain EMT and shape the tumor immune microenvironment in HER2-positive breast cancer. Collectively, these data provide a rationale for using miR-21 expression as a biomarker to select trastuzumab-chemotherapy-resistant HER2-positive breast cancer patients who may benefit from treatments containing PI3K inhibitors or immunomodulatory drugs
    corecore