464,509 research outputs found
The Beylkin-Cramer Summation Rule and A New Fast Algorithm of Cosmic Statistics for Large Data Sets
Based on the Beylkin-Cramer summation rule, we introduce a new fast algorithm
that enable us to explore the high order statistics efficiently in large data
sets. Central to this technique is to make decomposition both of fields and
operators within the framework of multi-resolution analysis (MRA), and realize
theirs discrete representations. Accordingly, a homogenous point process could
be equivalently described by a operation of a Toeplitz matrix on a vector,
which is accomplished by making use of fast Fourier transformation. The
algorithm could be applied widely in the cosmic statistics to tackle large data
sets. Especially, we demonstrate this novel technique using the spherical,
cubic and cylinder counts in cells respectively. The numerical test shows that
the algorithm produces an excellent agreement with the expected results.
Moreover, the algorithm introduces naturally a sharp-filter, which is capable
of suppressing shot noise in weak signals. In the numerical procedures, the
algorithm is somewhat similar to particle-mesh (PM) methods in N-body
simulations. As scaled with , it is significantly faster than the
current particle-based methods, and its computational cost does not relies on
shape or size of sampling cells. In addition, based on this technique, we
propose further a simple fast scheme to compute the second statistics for
cosmic density fields and justify it using simulation samples. Hopefully, the
technique developed here allows us to make a comprehensive study of
non-Guassianity of the cosmic fields in high precision cosmology. A specific
implementation of the algorithm is publicly available upon request to the
author.Comment: 27 pages, 9 figures included. revised version, changes include (a)
adding a new fast algorithm for 2nd statistics (b) more numerical tests
including counts in asymmetric cells, the two-point correlation functions and
2nd variances (c) more discussions on technic
Ethics, Rights, and White's Antitrust Skepticism
Mark White has developed a provocative skepticism about antitrust law. I first argue against three claims that are essential to his argument: the state may legitimately constrain or punish only conduct that violates someone’s rights, the market’s purpose is coordinating and maximizing individual autonomy, and property rights should be completely insulated from democratic deliberation. I then sketch a case that persons might have a right to a competitive market. If so, antitrust law does deal with conduct that violates rights. The main thread running throughout the article is that what counts as a legitimate exercise of property rights is dynamic, sensitive to various external conditions, and is the proper object of democratic deliberation
Programming of Finite Element Methods in MATLAB
We discuss how to implement the linear finite element method for solving the
Poisson equation. We begin with the data structure to represent the
triangulation and boundary conditions, introduce the sparse matrix, and then
discuss the assembling process. We pay special attention to an efficient
programming style using sparse matrices in MATLAB
- …
