464,509 research outputs found

    The Beylkin-Cramer Summation Rule and A New Fast Algorithm of Cosmic Statistics for Large Data Sets

    Full text link
    Based on the Beylkin-Cramer summation rule, we introduce a new fast algorithm that enable us to explore the high order statistics efficiently in large data sets. Central to this technique is to make decomposition both of fields and operators within the framework of multi-resolution analysis (MRA), and realize theirs discrete representations. Accordingly, a homogenous point process could be equivalently described by a operation of a Toeplitz matrix on a vector, which is accomplished by making use of fast Fourier transformation. The algorithm could be applied widely in the cosmic statistics to tackle large data sets. Especially, we demonstrate this novel technique using the spherical, cubic and cylinder counts in cells respectively. The numerical test shows that the algorithm produces an excellent agreement with the expected results. Moreover, the algorithm introduces naturally a sharp-filter, which is capable of suppressing shot noise in weak signals. In the numerical procedures, the algorithm is somewhat similar to particle-mesh (PM) methods in N-body simulations. As scaled with O(NlogN)O(N\log N), it is significantly faster than the current particle-based methods, and its computational cost does not relies on shape or size of sampling cells. In addition, based on this technique, we propose further a simple fast scheme to compute the second statistics for cosmic density fields and justify it using simulation samples. Hopefully, the technique developed here allows us to make a comprehensive study of non-Guassianity of the cosmic fields in high precision cosmology. A specific implementation of the algorithm is publicly available upon request to the author.Comment: 27 pages, 9 figures included. revised version, changes include (a) adding a new fast algorithm for 2nd statistics (b) more numerical tests including counts in asymmetric cells, the two-point correlation functions and 2nd variances (c) more discussions on technic

    School meals and nutritional standards(England)

    Get PDF

    Ethics, Rights, and White's Antitrust Skepticism

    Get PDF
    Mark White has developed a provocative skepticism about antitrust law. I first argue against three claims that are essential to his argument: the state may legitimately constrain or punish only conduct that violates someone’s rights, the market’s purpose is coordinating and maximizing individual autonomy, and property rights should be completely insulated from democratic deliberation. I then sketch a case that persons might have a right to a competitive market. If so, antitrust law does deal with conduct that violates rights. The main thread running throughout the article is that what counts as a legitimate exercise of property rights is dynamic, sensitive to various external conditions, and is the proper object of democratic deliberation

    Are you voting for democracy?

    Get PDF

    Programming of Finite Element Methods in MATLAB

    Full text link
    We discuss how to implement the linear finite element method for solving the Poisson equation. We begin with the data structure to represent the triangulation and boundary conditions, introduce the sparse matrix, and then discuss the assembling process. We pay special attention to an efficient programming style using sparse matrices in MATLAB
    corecore