5,549 research outputs found

    Efficient calculation of imaginary time displaced correlation functions in the projector auxiliary field quantum Monte-Carlo algorithm

    Full text link
    The calculation of imaginary time displaced correlation functions with the auxiliary field projector quantum Monte-Carlo algorithm provides valuable insight (such as spin and charge gaps) in the model under consideration. One of the authors and M. Imada [F.F. Assaad and M. Imada, J. Phys. Soc. Jpn. 65 189 (1996).] have proposed a numerically stable method to compute those quantities. Although precise this method is expensive in CPU time. Here, we present an alternative approach which is an order of magnitude quicker, just as precise, and very simple to implement. The method is based on the observation that for a given auxiliary field the equal time Green function matrix, GG, is a projector: G2=GG^2 = G.Comment: 4 papes, 1 figure in eps forma

    Do Differences in Social Environments Explain Gender Differences in Recreational Walking across Neighbourhoods?

    Get PDF
    Within a city, gender differences in walking for recreation (WfR) vary significantly across neighbourhoods, although the reasons remain unknown. This cross-sectional study investigated the contribution of the social environment (SE) to explaining such variation, using 2009 data from the How Areas in Brisbane Influence healTh and AcTivity (HABITAT) study, including 7866 residents aged 42-67 years within 200 neighbourhoods in Brisbane, Australia (72.6% response rate). The analytical sample comprised 200 neighbourhoods and 6643 participants (mean 33 per neighbourhood, range 8-99, 95% CI 30.6-35.8). Self-reported weekly minutes of WfR were categorised into 0 and 1-840 mins. The SE was conceptualised through neighbourhood-level perceptions of social cohesion, incivilities and safety from crime. Analyses included multilevel binomial logistic regression with gender as main predictor, adjusting for age, socioeconomic position, residential self-selection and neighbourhood disadvantage. On average, women walked more for recreation than men prior to adjustment for covariates. Gender differences in WfR varied significantly across neighbourhoods, and the magnitude of the variation for women was twice that of men. The SE did not explain neighbourhood differences in the gender-WfR relationship, nor the between-neighbourhood variation in WfR for men or women. Neighbourhood-level factors seem to influence the WfR of men and women differently, with women being more sensitive to their environment, although Brisbane's SE did not seem such a factor

    A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    Get PDF
    Wedemonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6mmdiameter microrod resonator used in our experiments has a large optical mode area of∼100 μm2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2 Hz−1.We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency.Wedemonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.William Loh, Joe Becker, Daniel C Cole, Aurelien Coillet, Fred N Baynes, Scott B Papp and Scott A Diddam

    Charge and Spin Structures of a dx2y2d_{x^2 - y^2} Superconductor in the Proximity of an Antiferromagnetic Mott Insulator

    Full text link
    To the Hubbard model on a square lattice we add an interaction, WW, which depends upon the square of a near-neighbor hopping. We use zero temperature quantum Monte Carlo simulations on lattice sizes up to 16×1616 \times 16, to show that at half-filling and constant value of the Hubbard repulsion, the interaction WW triggers a quantum transition between an antiferromagnetic Mott insulator and a dx2y2d_{x^2 -y^2} superconductor. With a combination of finite temperature quantum Monte Carlo simulations and the Maximum Entropy method, we study spin and charge degrees of freedom in the superconducting state. We give numerical evidence for the occurrence of a finite temperature Kosterlitz-Thouless transition to the dx2y2d_{x^2 -y^2} superconducting state. Above and below the Kosterlitz-Thouless transition temperature, TKTT_{KT}, we compute the one-electron density of states, N(ω)N(\omega), the spin relaxation rate 1/T11/T_1, as well as the imaginary and real part of the spin susceptibility χ(q,ω)\chi(\vec{q},\omega). The spin dynamics are characterized by the vanishing of 1/T11/T_1 and divergence of Reχ(q=(π,π),ω=0)Re \chi(\vec{q} = (\pi,\pi), \omega = 0) in the low temperature limit. As TKTT_{KT} is approached N(ω)N(\omega) develops a pseudo-gap feature and below TKTT_{KT} Imχ(q=(π,π),ω)Im \chi(\vec{q} = (\pi,\pi), \omega) shows a peak at finite frequency.Comment: 46 pages (latex) including 14 figures in encapsulated postscript format. Submitted for publication in Phys. Rev.

    Zone Determinant Expansions for Nuclear Lattice Simulations

    Full text link
    We introduce a new approximation to nucleon matrix determinants that is physically motivated by chiral effective theory. The method involves breaking the lattice into spatial zones and expanding the determinant in powers of the boundary hopping parameter.Comment: 20 pages, 6 figures, revtex4 (version to appear in PRC

    Bethe-Ansatz density-functional theory of ultracold repulsive fermions in one-dimensional optical lattices

    Full text link
    We present an extensive numerical study of ground-state properties of confined repulsively interacting fermions on one-dimensional optical lattices. Detailed predictions for the atom-density profiles are obtained from parallel Kohn-Sham density-functional calculations and quantum Monte Carlo simulations. The density-functional calculations employ a Bethe-Ansatz-based local-density approximation for the correlation energy, which accounts for Luttinger-liquid and Mott-insulator physics. Semi-analytical and fully numerical formulations of this approximation are compared with each other and with a cruder Thomas-Fermi-like local-density approximation for the total energy. Precise quantum Monte Carlo simulations are used to assess the reliability of the various local-density approximations, and in conjunction with these allow to obtain a detailed microscopic picture of the consequences of the interplay between particle-particle interactions and confinement in one-dimensional systems of strongly correlated fermions.Comment: 14 pages, 11 figures, 1 table, submitte

    Temperature Derivative of the Superfluid Density in the Attractive Hubbard model

    Full text link
    Based on extensions of the grand-canonical Quantum Monte-Carlo algorithm to incorporate magnetic fields, we provide numerical data confirming the existence of a Kosterlitz-Thouless transition in the attractive Hubbard model. Here, we calculate the temperature derivative of the superfluid density, to pin down the transition. Away from half-band filling, the above quantity, shows a response which increases with lattice size at the transition temperature. In contrast, such a signal is not observed for the case of a half-band filling.Comment: Latex 8 pages, 3 figures (in postscript format) appendded at the end of the fil

    The Red-Sequence Luminosity Function in Galaxy Clusters since z~1

    Full text link
    We use a statistical sample of ~500 rich clusters taken from 72 square degrees of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of ~30,000 red-sequence galaxies in clusters over the redshift range 0.35<z<0.95. We construct red-sequence luminosity functions (RSLFs) for a well-defined, homogeneously selected, richness limited sample. The RSLF at higher redshifts shows a deficit of faint red galaxies (to M_V=> -19.7) with their numbers increasing towards the present epoch. This is consistent with the `down-sizing` picture in which star-formation ended at earlier times for the most massive (luminous) galaxies and more recently for less massive (fainter) galaxies. We observe a richness dependence to the down-sizing effect in the sense that, at a given redshift, the drop-off of faint red galaxies is greater for poorer (less massive) clusters, suggesting that star-formation ended earlier for galaxies in more massive clusters. The decrease in faint red-sequence galaxies is accompanied by an increase in faint blue galaxies, implying that the process responsible for this evolution of faint galaxies is the termination of star-formation, possibly with little or no need for merging. At the bright end, we also see an increase in the number of blue galaxies with increasing redshift, suggesting that termination of star-formation in higher mass galaxies may also be an important formation mechanism for higher mass ellipticals. By comparing with a low-redshift Abell Cluster sample, we find that the down-sizing trend seen within RCS-1 has continued to the local universe.Comment: ApJ accepted. 11 pages, 5 figure

    Spin and charge dynamics of the ferromagnetic and antiferromagnetic two-dimensional half-filled Kondo lattice model

    Full text link
    We present a detailed numerical study of spin and charge dynamics of the two-dimensional Kondo lattice model with hopping t and exchange J. At T=0 and J > 0, the competition between the RKKY interaction and Kondo effect triggers a quantum phase transition between magnetically ordered and disordered insulators: J_c/t = 1.45(5). The quasiparticle gap scales as |J|. S(q,\omega), evolves smoothly from its strong coupling form with spin gap at q = (\pi,\pi) to a spin wave form. At J>0, A(\vec{k},\omega) shows a dispersion relation following that of hybridized bands. For J < J_c this feature is supplemented by shadows thus pointing to a coexistence of Kondo screening and magnetism. For J < 0 A(\vec{k},\omega) is similar to that of non-interacting electrons in a staggered magnetic field. Spin, T_S, and charge, T_C, scales are defined. For weak to intermediate couplings, T_S marks the onset of antiferromagnetic fluctuations and follows a J^2 law. At strong couplings T_S scales as J. T_C scales as J both at weak and strong couplings. At and slightly below T_C we observe i) a rise in the resistivity as a function of decreasing temperature, ii) a dip in the integrated density of states at the Fermi energy and iii) the occurrence of hybridized bands in A(k,\omega). It is shown that in the weak coupling limit, the charge gap of order J is of magnetic origin. The specific heat shows a two peak structure, the low temperature peak being of magnetic origin. Our results are compared to various mean-field theories.Comment: 30 pages, 24 figure

    Properties enhancement of oil palm plywood through veneer pretreatment with low molecular weight phenol-formaldehyde resin

    Get PDF
    One of the problems dealing with oil palm stem (OPS) plywood is the high veneer surface roughness that results in high resin consumption during the plywood manufacturing. In this study, evaluation was done on the effects of pretreatment of OPS veneers with phenol-formaldehyde resin on the bond integrity and bending strength of OPS plywood. OPS veneers were soaked in low molecular weight phenol-formaldehyde resin (LMW PF) for 20 seconds to obtain certain percentage of resin weight gain. OPS plywoods were produced using two types of lay-ups (100% outer veneer type and 100% inner veneer type) and two urea-formaldehyde (UF) adhesive spread amounts (200 g/m2 and 250 g/m2). The results show that pretreating the veneer with LMW PF could reduce the penetration of the adhesive into the fibres during gluing step. UF adhesive spread amount of 200 g/m2 is sufficient to produce good quality OPS plywood. The technique used in this study was able to enhance the mechanical properties of OPS plywood as well as reduce the amount of resin consumption
    corecore