We present an extensive numerical study of ground-state properties of
confined repulsively interacting fermions on one-dimensional optical lattices.
Detailed predictions for the atom-density profiles are obtained from parallel
Kohn-Sham density-functional calculations and quantum Monte Carlo simulations.
The density-functional calculations employ a Bethe-Ansatz-based local-density
approximation for the correlation energy, which accounts for Luttinger-liquid
and Mott-insulator physics. Semi-analytical and fully numerical formulations of
this approximation are compared with each other and with a cruder
Thomas-Fermi-like local-density approximation for the total energy. Precise
quantum Monte Carlo simulations are used to assess the reliability of the
various local-density approximations, and in conjunction with these allow to
obtain a detailed microscopic picture of the consequences of the interplay
between particle-particle interactions and confinement in one-dimensional
systems of strongly correlated fermions.Comment: 14 pages, 11 figures, 1 table, submitte