2,277 research outputs found

    Cryptococcus at work: Gene expression during human infection

    Get PDF
    Meningitis is a frequent manifestation of infection due to Cryptococcus neoformans and a major cause of increased morbidity in patients with AIDS. Numerous in vitro gene expression and genetic studies of the fungus have predicted a myriad of genes, pathways, and biological processes that may be critical for pathogenesis, and many studies using animal models have supported the role of these processes during infection. However, the relevance of these hypotheses based on in vitro and animal models has often been questioned. A recent study by Chen et al. [Y. Chen, D. L. Toffaletti, J. L. Tenor, A. P. Litvintseva, C. Fang, T. G. Mitchell, T. R. McDonald, K. Nielsen, D. R. Boulware, T. Bicanic, and J. R. Perfect, mBio 5(1):e01087-13, 2014] represents an important step in understanding the cryptococcal response during human infection

    Supporting novel home network management interfaces with Openflow and NOX

    Get PDF
    The Homework project has examined redesign of existing home network infrastructures to better support the needs and requirements of actual home users. Integrating results from several ethnographic studies, we have designed and built a home networking platform providing detailed per-flow measurement and management capabilities supporting several novel management interfaces. This demo specifically shows these new visualization and control interfaces, and describes the broader benefits of taking an integrated view of the networking infrastructure, realised through our router's augmented measurement and control APIs. Aspects of this work have been published: the Homework Database in Internet Management (IM) 2011 and implications of the ethnographic results are to appear at the SIGCOMM W-MUST workshop 2011. Separate, more detailed expositions of the interface elements and system performance and implications are currently under submission at other venues. A partial code release is already available and we anticipate fuller public beta release by Q4 2011

    Role of Cryptococcus neoformans Rho1 GTPases in the PKC1 signaling pathway in response to thermal stress

    Get PDF
    To initiate and establish infection in mammals, the opportunistic fungal pathogen Cryptococcus neoformans must survive and thrive upon subjection to host temperature. Primary maintenance of cell integrity is controlled through the protein kinase C1 (PKC1) signaling pathway, which is regulated by a Rho1 GTPase in Saccharomyces cerevisiae. We identified three C. neoformans Rho GTPases, Rho1, Rho10, and Rho11, and have begun to elucidate their role in growth and activation of the PKC1 pathway in response to thermal stress. Western blot analysis revealed that heat shock of wild-type cells resulted in phosphorylation of Mpk1 mitogen-activated protein kinase (MAPK). Constitutive activation of Rho1 caused phosphorylation of Mpk1 independent of temperature, indicating its role in pathway regulation. A strain with a deletion of RHO10 also displayed this constitutive Mpk1 phosphorylation phenotype, while one with a deletion of RHO11 yielded phosphorylation similar to that of wild type. Surprisingly, like a rho10Δ strain, a strain with a deletion of both RHO10 and RHO11 displayed temperature sensitivity but mimicked wild-type phosphorylation, which suggests that Rho10 and Rho11 have coordinately regulated functions. Heat shock-induced Mpk1 phosphorylation also required the PKC1 pathway kinases Bck1 and Mkk2. However, Pkc1, thought to be the major regulatory kinase of the cell integrity pathway, was dispensable for this response. Together, our results argue that Rho proteins likely interact via downstream components of the PKC1 pathway or by alternative pathways to activate the cell integrity pathway in C. neoformans

    Global transcriptome profile of Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress

    Get PDF
    The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2)O(2)) at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2)O(2). We determined the kinetics of H(2)O(2) breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2)O(2) breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2)O(2) treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2)O(2). These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans

    Short Time Behavior in De Gennes' Reptation Model

    Get PDF
    To establish a standard for the distinction of reptation from other modes of polymer diffusion, we analytically and numerically study the displacement of the central bead of a chain diffusing through an ordered obstacle array for times t<O(N2)t < O(N^2). Our theory and simulations agree quantitatively and show that the second moment approaches the t1/4t^{1/4} often viewed as signature of reptation only after a very long transient and only for long chains (N > 100). Our analytically solvable model furthermore predicts a very short transient for the fourth moment. This is verified by computer experiment.Comment: 4 pages, revtex, 4 ps file

    Cryptococcus neoformans phosphoinositide-dependent kinase 1 (PDK1) ortholog is required for stress tolerance and survival in murine phagocytes

    Get PDF
    Cryptococcus neoformans PKH2-01 and PKH2-02 are orthologous to mammalian PDK1 kinase genes. Although orthologs of these kinases have been extensively studied in S. cerevisiae, little is known about their function in pathogenic fungi. In this study, we show that PKH2-02 but not PKH2-01 is required for C. neoformans to tolerate cell wall, oxidative, nitrosative, and antifungal drug stress. Deletion of PKH2-02 leads to decreased basal levels of Pkc1 activity and, consequently, reduced activation of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway in response to cell wall, oxidative, and nitrosative stress. PKH2-02 function also is required for tolerance of fluconazole and amphotericin B, two important drugs for the treatment of cryptococcosis. Furthermore, OSU-03012, an inhibitor of human PDK1, is synergistic and fungicidal in combination with fluconazole. Using a Galleria mellonella model of low-temperature cryptococcosis, we found that PKH2-02 is also required for virulence in a temperature-independent manner. Consistent with the hypersensitivity of the pkh2-02Δ mutant to oxidative and nitrosative stress, this mutant shows decreased survival in murine phagocytes compared to that of wild-type (WT) cells. In addition, we show that deletion of PKH2-02 affects the interaction between C. neoformans and phagocytes by decreasing its ability to suppress production of tumor necrosis factor alpha (TNF-α) and reactive oxygen species. Taken together, our studies demonstrate that Pkh2-02-mediated signaling in C. neoformans is crucial for stress tolerance, host-pathogen interactions, and both temperature-dependent and -independent virulence

    Cross talk between the Cell Wall Integrity and Cyclic AMP/Protein Kinase A pathways in Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis of C. neoformans, and biosynthesis and repair of the wall is primarily controlled by the cell wall integrity (CWI) signaling pathway. Previous work has shown that deletion of genes encoding the four major kinases in the CWI signaling pathway, namely, PKC1, BCK1, MKK2, and MPK1 results in severe cell wall phenotypes, sensitivity to a variety of cell wall stressors, and for Mpk1, reduced virulence in a mouse model. Here, we examined the global transcriptional responses to gene deletions of BCK1, MKK2, and MPK1 compared to wild-type cells. We found that over 1,000 genes were differentially expressed in one or more of the deletion strains, with 115 genes differentially expressed in all three strains, many of which have been identified as genes regulated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Biochemical measurements of cAMP levels in the kinase deletion strains revealed significantly less cAMP in all of the deletion strains compared to the wild-type strain. The deletion strains also produced significantly smaller capsules than the wild-type KN99 strain did under capsule-inducing conditions, although the levels of capsule they shed were similar to those shed by the wild type. Finally, addition of exogenous cAMP led to reduced sensitivity to cell wall stress and restored surface capsule to levels near those of wild type. Thus, we have direct evidence of cross talk between the CWI and cAMP/PKA pathways that may have important implications for regulation of cell wall and capsule homeostasis
    • …
    corecore