120 research outputs found

    Context-based Information Fusion: A survey and discussion

    Get PDF
    This survey aims to provide a comprehensive status of recent and current research on context-based Information Fusion (IF) systems, tracing back the roots of the original thinking behind the development of the concept of \u201ccontext\u201d. It shows how its fortune in the distributed computing world eventually permeated in the world of IF, discussing the current strategies and techniques, and hinting possible future trends. IF processes can represent context at different levels (structural and physical constraints of the scenario, a priori known operational rules between entities and environment, dynamic relationships modelled to interpret the system output, etc.). In addition to the survey, several novel context exploitation dynamics and architectural aspects peculiar to the fusion domain are presented and discussed

    Overview of contextual tracking approaches in information fusion

    Get PDF
    Proceedings of: Geospatial InfoFusion III. 2-3 May 2013 Baltimore, Maryland, United States.Many information fusion solutions work well in the intended scenarios; but the applications, supporting data, and capabilities change over varying contexts. One example is weather data for electro-optical target trackers of which standards have evolved over decades. The operating conditions of: technology changes, sensor/target variations, and the contextual environment can inhibit performance if not included in the initial systems design. In this paper, we seek to define and categorize different types of contextual information. We describe five contextual information categories that support target tracking: (1) domain knowledge from a user to aid the information fusion process through selection, cueing, and analysis, (2) environment-to-hardware processing for sensor management, (3) known distribution of entities for situation/threat assessment, (4) historical traffic behavior for situation awareness patterns of life (POL), and (5) road information for target tracking and identification. Appropriate characterization and representation of contextual information is needed for future high-level information fusion systems design to take advantage of the large data content available for a priori knowledge target tracking algorithm construction, implementation, and application.Publicad

    High-Level Information Fusion in Visual Sensor Networks

    Get PDF
    Information fusion techniques combine data from multiple sensors, along with additional information and knowledge, to obtain better estimates of the observed scenario than could be achieved by the use of single sensors or information sources alone. According to the JDL fusion process model, high-level information fusion is concerned with the computation of a scene representation in terms of abstract entities such as activities and threats, as well as estimating the relationships among these entities. Recent experiences confirm that context knowledge plays a key role in the new-generation high-level fusion systems, especially in those involving complex scenarios that cause the failure of classical statistical techniques –as it happens in visual sensor networks. In this chapter, we study the architectural and functional issues of applying context information to improve high-level fusion procedures, with a particular focus on visual data applications. The use of formal knowledge representations (e.g. ontologies) is a promising advance in this direction, but there are still some unresolved questions that must be more extensively researched.The UC3M Team gratefully acknowledges that this research activity is supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02

    Fusion Based Safety Application for Pedestrian Detection with Danger Estimation

    Get PDF
    Proceedings of: 14th International Conference on Information Fusion (FUSION 2011). Chicago, Illinois, USA 5-8 July 2011.Road safety applications require the most reliable data. In recent years data fusion is becoming one of the main technologies for Advance Driver Assistant Systems (ADAS) to overcome the limitations of isolated use of the available sensors and to fulfil demanding safety requirements. In this paper a real application of data fusion for road safety for pedestrian detection is presented. Two sets of automobile-emplaced sensors are used to detect pedestrians in urban environments, a laser scanner and a stereovision system. Both systems are mounted in the automobile research platform IVVI 2.0 to test the algorithms in real situations. The different safety issues necessary to develop this fusion application are described. Context information such as velocity and GPS information is also used to provide danger estimation for the detected pedestrians.This work was supported by the Spanish Government through the Cicyt projects FEDORA (GRANT TRA2010- 20225-C03-01 ) , VIDAS-Driver (GRANT TRA2010-21371-C03-02 ).Publicad

    Strategies and Techniques for Use and Exploitation of Contextual Information in High-Level Fusion Architectures

    Get PDF
    Proceedings of: 13th Conference on Information Fusion (FUSION 2010): Edinburgh, UK. 26-29 July 2010.Contextual Information is proving to be not only an additional exploitable information source for improving entity and situational estimates in certain Information Fusion systems, but can also be the entire focus of estimation for such systems as those directed to Ambient Intelligence (AI) and Context-Aware(CA) applications. This paper will discuss the role(s) of Contextual Information (CI) in a wide variety of IF applications to include AI, CA, Defense, and Cyber-security among possible others, the issues involved in designing strategies and techniques for CI use and exploitation, provide some exemplars of evolving CI use/exploitation designs on our current projects, and describe some general frameworks that are evolving in various application domains where CI is proving critical.The UC3M Team gratefully acknowledge that this research activity is supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732- C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02. UC3M also thanks Prof. James Llinas for his helpful comments during his stay, which has been supported by the collaboration agreement ‘Chairs of Excellence’ between University Carlos III and Banco Santander. The US/UB Team gratefully acknowledge that this research activity is supported by a Multidisciplinary University Research Initiative (MURI) grant (Number W911NF-09-1-0392) for “Unified Research on Networkbased Hard/Soft Information Fusion”, issued by the US Army Research Office (ARO) under the program management of Dr. John LaveryPublicad

    Implementing Dempster-Shafer Theory for property similarity in Conceptual Spaces modeling

    Get PDF
    Previous work has shown that the Complex Conceptual Spaces − Single Observation Mathematical framework is a useful tool for event characterization. This mathematical framework is developed on the basis of Conceptual Spaces and uses integer linear programming to find the needed similarity values. The work of this paper is focused primarily on space event characterization. In particular, the focus is on the ranking of threats for malicious space events such as a kinetic kill. To make the Conceptual Spaces framework work, the similarity values between the contents of observations on the one hand and the properties of the entities observed on the other needs to be found. This paper shows how to exploit Dempster-Shafer theory to implement a statistical approach for finding these similarities values. This approach will allow a user to identify the uncertainty involved in similarity value data, which can later be propagated through the developed mathematical model in order for the user to know the overall uncertainty in the observation-to-concept mappings needed for space event characterization

    Blinded Predictions and Post Hoc Analysis of the Second Solubility Challenge Data: Exploring Training Data and Feature Set Selection for Machine and Deep Learning Models

    Get PDF
    Accurate methods to predict solubility from molecular structure are highly sought after in the chemical sciences. To assess the state of the art, the American Chemical Society organized a "Second Solubility Challenge"in 2019, in which competitors were invited to submit blinded predictions of the solubilities of 132 drug-like molecules. In the first part of this article, we describe the development of two models that were submitted to the Blind Challenge in 2019 but which have not previously been reported. These models were based on computationally inexpensive molecular descriptors and traditional machine learning algorithms and were trained on a relatively small data set of 300 molecules. In the second part of the article, to test the hypothesis that predictions would improve with more advanced algorithms and higher volumes of training data, we compare these original predictions with those made after the deadline using deep learning models trained on larger solubility data sets consisting of 2999 and 5697 molecules. The results show that there are several algorithms that are able to obtain near state-of-the-art performance on the solubility challenge data sets, with the best model, a graph convolutional neural network, resulting in an RMSE of 0.86 log units. Critical analysis of the models reveals systematic differences between the performance of models using certain feature sets and training data sets. The results suggest that careful selection of high quality training data from relevant regions of chemical space is critical for prediction accuracy but that other methodological issues remain problematic for machine learning solubility models, such as the difficulty in modeling complex chemical spaces from sparse training data sets

    Ontology and Cognitive Outcomes

    Get PDF
    The term ‘intelligence’ as used in this paper refers to items of knowledge collected for the sake of assessing and maintaining national security. The intelligence community (IC) of the United States (US) is a community of organizations that collaborate in collecting and processing intelligence for the US. The IC relies on human-machine-based analytic strategies that 1) access and integrate vast amounts of information from disparate sources, 2) continuously process this information, so that, 3) a maximally comprehensive understanding of world actors and their behaviors can be developed and updated. Herein we describe an approach to utilizing outcomes-based learning (OBL) to support these efforts that is based on an ontology of the cognitive processes performed by intelligence analysts. Of particular importance to the Cognitive Process Ontology is the class Representation that is Warranted. Such a representation is descriptive in nature and deserving of trust in its veridicality. The latter is because a Representation that is Warranted is always produced by a process that was vetted (or successfully designed) to reliably produce veridical representations. As such, Representations that are Warranted are what in other contexts we might refer to as ‘items of knowledge’

    An Introduction to Hard and Soft Data Fusion via Conceptual Spaces Modeling for Space Event Characterization

    Get PDF
    This paper describes an AFOSR-supported basic research program that focuses on developing a new framework for combining hard with soft data in order to improve space situational awareness. The goal is to provide, in an automatic and near real-time fashion, a ranking of possible threats to blue assets (assets trying to be protected) from red assets (assets with hostile intentions). The approach is based on Conceptual Spaces models, which combine features from traditional associative and symbolic cognitive models. While Conceptual Spaces are revolutionary, they lack an underlying mathematical framework. Several such frameworks have attempted to represent Conceptual Spaces, but by far the most robust is the model developed by Holender. His model utilizes integer linear programming in order to obtain an overall similarity value between observations and concepts that support the formation of hypotheses. This paper will describe a method for building Conceptual Spaces models for threats that utilizes ontologies as a means to provide a clear semantic foundation for this inferencing process; in particular threat ontologies and space domain ontologies are developed and employed in this approach. A space situational awareness use-case is presented involving a kinetic kill scenario and results are shown to assess the performance of this fusion-based inferencing framework
    • 

    corecore