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Abstract - Contextual Information is proving to be not 
only an additional exploitable information source for 
improving entity and situational estimates in certain 
Information Fusion systems, but can also be the entire 
focus of estimation for such systems as those directed to 
Ambient Intelligence (AI) and Context-Aware(CA) 
applications.  This paper will discuss the role(s) of 
Contextual Information (CI) in a wide variety of IF 
applications to include AI, CA, Defense, and Cyber-
security among possible others, the issues involved in 
designing strategies and techniques for CI use and 
exploitation, provide some exemplars of evolving CI 
use/exploitation designs on our current projects, and 
describe some general frameworks that are evolving in 
various application domains where CI is proving 
critical. 
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1 Introduction 
It can be argued that there are four categories of 
information that can be applied to any Information Fusion 
(IF) problem: observational data, a priori knowledge 
models, inductively learned knowledge, and contextual 
information.  For a broad class of applications, many IF 
processes and systems have been designed to work largely 
on the first two types of information; these are the class of 
systems built on a deductive-model foundation and that 
largely employ observational data in a scheme to more or 
less match the data against the models.  These approaches 
can work well for what could be called well-behaved and 
well-studied problem domains but cannot be expected to 
work in problems where the “world-behavior” is very 
complex and unpredictable or in problems where 
contextual influences are important or even critical.  One 
such class of defense-type applications are those involving 
Counterinsurgency (“COIN”) and irregular warfare 
applications, where both complex and unpredictable 
adversarial behavior can be expected, and where even 
political and religious contextual effects can be prime 

drivers or constraints to such behavior.  There have been 
some studies in the IF community that have attempted to 
incorporate contextual effects, such as the effect of local 
terrain on object kinematics in fusion-based tracking 
system development (e.g., [1]). 

Further, in certain applications, the contextual setting is 
in fact the prime focus of the IF system to be developed, 
i.e., fusion of observational data and use of knowledge
models is employed in order to estimate the contextual 
framework itself; these are such applications as Ambient 
Intelligence Systems and Context-aware systems.  These 
applications often involve visual, imagery-based 
observational data.  A related application area thus is that 
of video-based surveillance systems, where contextual 
effects are also important. 

Teams from the University of Carlos III of Madrid in 
Spain (UC3M) and the University at Buffalo (UB) in the 
USA are sharing their interests in this research area and 
have joined in this paper to describe their respective 
approaches to representing, using, and exploiting 
contextual information in these different application 
domains.  This paper therefore has two main sections 
framed around the research work in the respective 
domains, with UC3M leading the discussion on ambient 
intelligence, context-aware, and video surveillance 
applications, and UB leading the discussion on COIN-type 
defense applications.  

This paper is organized as follows. Section 2 discusses 
the role of contextual information in high-level IF. We 
describe two architectural frameworks for context 
knowledge exploitation, namely the “a priori” and the “a 
posteriori” models. In Section 3, we present a context-
based approach to IF in video surveillance developed at 
UC3M. This proposal reveals the advantages of ontology-
based context representation and reasoning in Ambient 
Intelligence and Context-aware systems. Section 4 
presents an approach to context-based Information 
Retrieval for COIN developed at UB. Process flow and 
advantages of the approach are considered. The paper ends 
with some conclusions and prospective research 
directions. 
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2 The role of contextual information in 
high-level Information Fusion 

2.1 Understanding and using context 
Contextual Information is that information that can be 
said to “surround” a situation of interest in the world.  It is 
information that aids in understanding the (estimated) 
situation and also aids in reacting to the situation, if a 
reaction is required.  It can seen as a set of constraints to a 
reasoning process about a situation; Kandefer and Shapiro 
define it this way [2]: “the structured set of variable, 
external constraints to some (natural or artificial) 
cognitive process that influences the behavior of that 
process in the agent(s) under consideration.“  There are of 
course other definitions of this somewhat ambigous term, 
such as that offered by Dey and Abowd, who state that 
context is “any information (either implicit or explicit) 
that can be used to characterize the situation of an entity” 
[3].  Contextual information can be relatively or fully 
static or can be dynamic, possibly changing along the 
same timeline as the situation.  It is also likely that the full 
characterization and specification of Contextual 
Information may not be able to be known at 
system/algorithm design time, except in very closed 
worlds.    

Thus, we envision an “a priori” framework of 
exploitation of Contextual Information that attempts to 
account for the effects on situational estimation of that 
Contextual Information (CI henceforth) that is known at 
design time; there is a question of the ease or difficulty 

involved in integrating CI effects into a fusion system 
design or into any algorithm designs.  This issue is 
influenced in part by the nature of the CI and the manner 
of its native representation, e.g., as numeric or symbolic, 
and the nature of the corresponding algorithm.  Strategies 
for a priori exploitation of CI may thus require the 
invention of new hybrid methods that incorporate 
whatever information an algorithm normally employs in 
estimation (usually observational data) with an adjunct CI 
exploitation process.  Note too that CI may, like 
observational data, have errors and inconsistencies itself, 
and accommodation of such errors is a consideration for 
hybrid algorithm design.  In this case then, we have a 
notional processing operation as shown in Fig 1. 

Similarly, we envision the need for an “a posteriori” CI 
exploitation process, due to at least two factors: 

1) That all relevant CI may not be able to be known at
system/algorithm design time, and may have to be
searched for and discovered at runtime, as a function
of the current situation estimate.

2) That such CI may not be of a type that was integrated
into the system/algorithm designs at design time and
so may not be able to be easily integrated into the
situation estimation process.

In this case then we envision that at least part of the job 
of posteriori CI exploitation would be of a type that 
checks the consistency of a current situational hypothesis 
with the newly-discovered (and situationally-relevant) CI, 
but also – if the hypothesis is in fact consistent – adds 
some explanatory aspects to the declared hypothesis. 

Streaming Observational Data

Hybrid Fusion 
Estimation 
Algorithm

Available Contextual Information CI 1

Web Other

Streaming Meta-data

Area of Interest, Time

Context  Retrieval
(Relations Known A Priori)

“A Priori” Fusion
Estimate Hf , 
accounting for CI 1

Middleware Layer

Figure 1. Notional Process Flow for “A Priori” CI Exploitation 
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There are yet other system engineering issues.  The first 
is the question of accessibility; CI must of course be 
accessible in order to use it, but accessibility may not be a 
straightforward matter in all cases.  One question is 
whether the most-current CI is available; another may be 
that some CI is controlled or secure and may have limited 
availability.  The other question is one of representational 
form.  CI data can be expected to be of a type that has 
been created by “native” users – for example weather data, 
important in many fusion applications as CI, is generated 
by meteorologists, for meteorologists (not for fusion 
system designers) – thus, even if these data are available, 
there is likely to be a need for a “middleware” layer that 
incorporates some logic and algorithms to both sample 
these data and shape them into a form suitable for use in 
fusion processes of various type.  In even simpler cases, 
this middleware may be required to reformat the data from 
some native form to a useable form. 

In spite of some a priori mapping of how CI influences 
or constrains the way in which situational inferences or 
estimates can be developed , which may serve certain 
environments, the defense and security type applications, 
with their various dynamic and uncertain types of CI, 
demand a more adaptive approach. Given a nominated 
situational hypothesis Hf from a fusion process or 
“engine” (that might already have accounted for some CI, 
as explained above), the first question is: what CI type 
information is relevant to this hypothesis?  As cited by 
Kandefer and Shapiro in [1], “The relevancy problem is 
defined by Ekbia and Maguitman as “the problem of 
identifying and using properly [only] the information that 
should exert an influence on our beliefs, goals, or plans” 
[4]. Said otherwise, relevant CI is only that information 
that influences our interpretation or understanding of Hf.  
Presuming a “relevancy filter” can be crafted, a search 
function would explore the available or retrievable CI and 
make this CI available to a “posteriori” reasoning engine. 
That reasoning engine would then use a CI-guided subset 

of Domain Knowledge, and the retrieved CI to reason over 
Hf to first determine consistency of Hf   with the relevant 
CI.  If it is inconsistent, then some type of adjudication 
logic will need to be applied to reconcile an inconsistency 
between the fusion process that produced Hf  and the 
posteriori reasoning process that judges it as inconsistent. 
If however Hf is judged as consistent with the additional 
CI, an expanded interpretation of Hf   could be developed, 
providing a deeper situational understanding.  This 
processing flow is depicted in Fig 2. 

As noted in Fig 2, this overall process, which can be 
considered a “Process Refinement” operation, would be a 
so-called “Level 4” process in the context of the JDL Data 
Fusion Process Model [5], which identifies Level 4 as the 
class of adaptive operations targeted to fusion process 
enhancement. 

2.2  Related works in CI exploitation in 
Information Fusion 

Symbolic models have been applied to acquire, represent, 
and exploit knowledge in fusion, and particularly in fusion 
of visual information. In the last years, the interest in 
ontologies has increased considerably [6], and its use is 
becoming more and more frequent. Nevertheless, despite 
of the fact that most of the current approaches combine 
contextual and perceptual information, they do not 
explicitly describe how context is characterized and 
integrated in the fusion process. This paper is aimed to 
encourage the discussion on these topics.  

Previous ontology-based fusion researches can be 
classified according to the four levels defined by the JDL 
model. At image-data level (i.e., JDL level 0), one of the 
most important contributions is COMM (Core Ontology 
for MultiMedia), an OWL ontology to encode MPEG-7 
data [7]. Similarly, the Media Annotations Working 
Group of the W3C is working in an OWL-based language 
for adding metadata to Web images and videos [8]. 

Figure 2. Notional Process Flow for “A Posteriori” CI Exploitation 
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Other proposals are targeted at modeling video content 
at object level (i.e., JDL L1). For example, a framework 
for video event representation and annotation is described 
in [9]. This framework includes two languages, namely 
VERL (Video Event Representation Language) and 
VEML (Video Event Markup Language), used to describe 
processes and to markup video sequences, respectively. 
Other authors have discussed and improved this approach 
to support the representation of uncertain knowledge [10]. 
The research work in [11] presents a symbolic 
representation for the data managed by a tracking 
algorithm. Similarly, recently it has been a first 
approximation to the development of an ontology for 
tracking data [12].  

Scene interpretation issues (i.e., JDL L2 and L3) are 
being dealt with ontologies as well. In [13], it is presented 
a proposal for scene interpretation based on Description 
Logics and supported by the reasoning features of RACER 
inference engine. The problem of representing high-level 
semantics of situations with a computable formalism is 
also faced in [14], where an OWL ontology encoding 
Barwise’s situation semantics is developed.  

All these research works focus on contextual scene 
recognition, but as previously mentioned, it is also 
interesting to apply this knowledge to refine image-
processing algorithms (which corresponds to JDL L4), and 
particularly trackers. A preliminary approach to this topic 
has been presented in [19]. In the present paper, some 
aspects of the current state of this research are reviewed, 
and its contributions from an architectural and knowledge 
management point of view are discussed. 
3 Applications in Video Surveillance, 

Ambient Intelligence, and Context-aware 
Systems 

Third-generation surveillance applications are considered 
to be the next step in multi-camera security systems [15, 
16]. This term designate systems that resemble the nature 
of the human intelligent process of surveillance, which 
activates certain cognitive abilities, and that satisfy the 
requirements of modern surveillance, which are among 
others the management of a large number of cameras, the 
geographical spread of resources and the need of many 
monitoring points. The ultimate goal of third-generation 
surveillance systems is to automatically achieve a high 
degree of understanding of the scene from multiple 
observations to barely require operator attention while 
cutting component cost.  

The existence of multiple cameras requires further 
researches to develop information fusion procedures to 
integrate data generated at different locations and 
reasoning techniques to obtain a high-level and global 

interpretation of the scene. A solution to overcome these 
issues is to provide the image-processing algorithms with 
additional information about the observed entities not 
directly obtained by the cameras; i.e., to incorporate CI in 
the data and information fusion process.  

In this domain application, we consider that any 
external piece of knowledge used to complete the 
quantitative data about the scene computed by 
straightforward image-analysis algorithms can be 
considered context. This definition is coherent with the 
definitions provided above. Four sources of context 
knowledge must be taken into account [17]: (i) the scene 
environment: structures, static objects, illumination and 
other behavioral characteristics, etc.; (ii) the parameters of 
the recording: camera, image, and location features; (iii) 
historic information: past detected events; (iv) soft 
information provided by humans. 

Our approach to the notion of context is intentionally 
imprecise. Usually, it is difficult to clearly distinguish 
which information is context and which information is 
perception, either from a computational or a cognitive 
perspective. Hence, we propose to create a common 
symbolic representation and reasoning model to support 
context exploitation. CI is applied to support two 
abductive reasoning tasks in our Computer Vision 
framework: high-level interpretation of scenes and 
feedback generation to improve performance of low-level 
image processing procedures. 

3.1 An architecture for high-level CI-based 
visual Information Fusion 

The architecture of our Computer Vision framework is 
depicted in Figure 3. The schema shows the tracking 
system (the GTL, general tracking layer) and, built upon 
it, the context-based extension (the CL, context layer). 
The GTL and the CL communicate through the GTL/CL 
interface. 

The GTL is a classical tracking procedure. The CL 
manages the CL model, i.e. the ontological representation 
of the scene (including context and perceived knowledge), 
and carries out procedures to update and reason with it. 
The CL model is implemented as a set of interrelated 
ontologies organized according to the JDL model. The 
terminological axioms of the CL ontologies establish a 
controlled vocabulary to describe scenes. The current state 
of the scene is represented with instances of these 
concepts and relations. The GTL/CL interface, which 
guarantees interoperability and independence between 
both layers, includes methods to update the CL model 
according to the GTL tracking information, and to consult 
recommendations calculated by the CL. 

4



3.2   An ontological representation of CI  
The knowledge of the CL model is structured in four 
layers, as depicted in Figure 4: 

• Camera data (L0). Sequence provided by the cameras
(in some processable video format).

• Tracking data (L1). Output of the tracking algorithm
represented with ontological terms: frames, tracks and
track properties (color, position, velocity, etc.).

• Scene objects (L1-L1/2). Objects resulting from
making a correspondence between existing tracks and
possible scene objects. For example, a track can be
inferred to correspond to a person (possibly by
applying context). Scene objects also include static
elements, which may be defined a priori.

• Activities (L2). Description of relations between
objects which last in time, for example, grouping,
approaching, or picking/leaving an object.

• Impacts and threats (L3). Cost or threat value
assigned to activities.

• Feedback and process improvement (L4). Abstract
representation of the suggestions provided to the
tracking procedure.

Each one of these levels corresponds to an ontology in 
the CL knowledge representation model, namely: TREN, 
SCOB, ACTV, IMPC and RECO. We provide a reference 
version of these ontologies1 in the ontology language 
OWL that must be refined in a concrete application. For 
instance, in a particular application it may be interesting to 
define a concept to represent a Mirror as a specialization 
of StaticObject and ReflectingObject, which are concepts 

1 http://www.giaa.inf.uc3m.es/miembros/jgomez/ontologies/ 

of SCOB. For a more extensive description of these 
ontologies, see [18]. 
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Figure 4. Multi-level Representation of Visual Knowledge 
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Figure 3. Architecture of the Context-Based Computer Vision framework 
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The ontologies of the CL model only contain 
descriptive knowledge; i.e., axioms defining concepts and 
relations. They offer a vocabulary to describe scenes that 
must be instantiated in a concrete application according to 
the entities appearing in the scene, both static and 
dynamic.  

Before starting the analysis of a video sequence, it is 
necessary to annotate the static elements of the scenario. 
Annotating the scenario means to create instances of the 
ontologies describing its properties: object position and 
size, possible occlusions, enter and exit zones, or any 
other contextual knowledge that we may consider 
necessary (see Figure 5.(a)). Additionally, contextual rules 
must be loaded into the reasoner (see next section). 
Ontology instances corresponding to the dynamic entities 
of the scene are created and deleted during the processing 
of the sequence as a result of the track information 
provided by the GTL and additional reasoning processes 
(see Figure 5.(b)). 

3.3 Abductive reasoning for scene 
understanding and feedback 
Standard ontology reasoning procedures can be performed 
within the CL ontologies to infer additional knowledge 
from the explicitly asserted facts (tracking data and a 
priori context). By using an inference engine, tasks such 
as classification or instance checking can be performed. 
Nevertheless, monotonicity of ontology languages forbids 
adding new knowledge to the models while reasoning, 
which is required in scene interpretation.  

Scene interpretation is a paradigmatic case of abductive 
reasoning, in contrast to the Description Logics (DLs) 
deductive reasoning: abductive reasoning takes a set of 
facts as input and finds a suitable hypothesis that explains 
them (sometimes with an associated degree of confidence 
or probability). This is what is needed in our case: we 
want to figure out what is happening in the scene from the 
observed and the contextual facts. In terms of the 
architecture of the CL, scene interpretation can be seen as 
an abductive transformation from instances of a lower 
level ontology to instances of a higher level ontology. 
Abductive reasoning is not supported by ontologies [19], 
but it can be simulated by using customized procedures or, 

preferably, by defining transformation rules in a suitable 
query language. RACER2, an inference engine for DL 
ontologies, allows abductive reasoning, and therefore it 
has been our choice to implement the framework. In this 
first approximation, we have not considered uncertain 
abduction, which is a promising direction of future 
research. 

In our framework, abductive rules formally represent 
contextual, heuristic and common sense knowledge to 
accomplish high-level scene interpretation and low-level 
tracking refinement [20]. Accordingly, we have two types 
of rules: bottom-up rules and top-down rules.  

Bottom-up rules are used in scene interpretation. For 
instance, some rules could be defined to identify objects 
from track measures; i.e., to obtain SCOB instances from 
TREN instances. An example rule may be: create a person 
instance when an unidentified track larger than a 
predefined size is detected inside a region of the image.  

Top-down rules create suggested action instances from 
the current interpretation of the scene, the historical data, 
and the predictions. These actions are retrieved and 
interpreted by the GTL through the GTL/CL interface, 
resulting (if not discarded) in corrections of the tracking 
parameters, modifications of the data structures managed 
by the algorithm, etc. Recommendations can be generated 
at different abstraction levels; in practice, that means that 
feedback rules have terms of the TREN, SCOB, ACTV, and 
IMPC ontologies in their antecedent; and terms of the 
RECO ontology in their consequent. An example rule may 
recommend ignoring a track associated to a person that is 
inside an area marked as a mirror. More details of the use 
of RACER abductive rules in our framework can be found 
in [21]. 

4 Context-based Information Retrieval: 
Establishing CI from Knowledge Sources 

Context-based Information Retrieval (CBIR) [22] is an 
independent, pre-processing step that occurs before a 
process that requires contextual information. A general 
CBIR procedure operates by examining an input, such as 
sensor data. It uses that input to constrain the knowledge 
that is available to the reasoner. This process is depicted 
in Fig. 6. 

2 http://www.racer-systems.com/ 

(a) Initial mark-up of the scenario (b) Additional instances added during the processing

Figure 5. Correspondence between Scene Entities and Ontology Instances 
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Figure 6.  General CBIR Processing
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4.1 Contextual Enhancemen
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